Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taku Amo is active.

Publication


Featured researches published by Taku Amo.


Journal of Clinical Investigation | 2008

FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets

Naonobu Nishino; Yoshikazu Tamori; Sanshiro Tateya; Takayuki Kawaguchi; Tetsuro Shibakusa; Wataru Mizunoya; Kazuo Inoue; Riko Kitazawa; Sohei Kitazawa; Yasushi Matsuki; Ryuji Hiramatsu; Satoru Masubuchi; Asako Omachi; Kazuhiro Kimura; Masayuki Saito; Taku Amo; Shigeo Ohta; Tomohiro Yamaguchi; Takashi Osumi; Jinglei Cheng; Toyoshi Fujimoto; Harumi Nakao; Kazuki Nakao; Atsu Aiba; Hitoshi Okamura; Tohru Fushiki; Masato Kasuga

White adipocytes are unique in that they contain large unilocular lipid droplets that occupy most of the cytoplasm. To identify genes involved in the maintenance of mature adipocytes, we expressed dominant-negative PPARgamma in 3T3-L1 cells and performed a microarray screen. The fat-specific protein of 27 kDa (FSP27) was strongly downregulated in this context. FSP27 expression correlated with induction of differentiation in cultured preadipocytes, and the protein localized to lipid droplets in murine white adipocytes in vivo. Ablation of FSP27 in mice resulted in the formation of multilocular lipid droplets in these cells. Furthermore, FSP27-deficient mice were protected from diet-induced obesity and insulin resistance and displayed an increased metabolic rate due to increased mitochondrial biogenesis in white adipose tissue (WAT). Depletion of FSP27 by siRNA in murine cultured white adipocytes resulted in the formation of numerous small lipid droplets, increased lipolysis, and decreased triacylglycerol storage, while expression of FSP27 in COS cells promoted the formation of large lipid droplets. Our results suggest that FSP27 contributes to efficient energy storage in WAT by promoting the formation of unilocular lipid droplets, thereby restricting lipolysis. In addition, we found that the nature of lipid accumulation in WAT appears to be associated with maintenance of energy balance and insulin sensitivity.


Lancet Neurology | 2015

CHCHD2 mutations in autosomal dominant late-onset Parkinson's disease: a genome-wide linkage and sequencing study

Manabu Funayama; Kenji Ohe; Taku Amo; Norihiko Furuya; Junji Yamaguchi; Shinji Saiki; Yuanzhe Li; Kotaro Ogaki; Maya Ando; Hiroyo Yoshino; Hiroyuki Tomiyama; Kenya Nishioka; Kazuko Hasegawa; Hidemoto Saiki; Wataru Satake; Kaoru Mogushi; Ryogen Sasaki; Yasumasa Kokubo; Shigeki Kuzuhara; Tatsushi Toda; Yoshikuni Mizuno; Yasuo Uchiyama; Kinji Ohno; Nobutaka Hattori

BACKGROUND Identification of causative genes in mendelian forms of Parkinsons disease is valuable for understanding the cause of the disease. We did genetic studies in a Japanese family with autosomal dominant Parkinsons disease to identify novel causative genes. METHODS We did a genome-wide linkage analysis on eight affected and five unaffected individuals from a family with autosomal dominant Parkinsons disease (family A). Subsequently, we did exome sequencing on three patients and whole-genome sequencing on one patient in family A. Variants were validated by Sanger sequencing in samples from patients with autosomal dominant Parkinsons disease, patients with sporadic Parkinsons disease, and controls. Participants were identified from the DNA bank of the Comprehensive Genetic Study on Parkinsons Disease and Related Disorders (Juntendo University School of Medicine, Tokyo, Japan) and were classified according to clinical information obtained by neurologists. Splicing abnormalities of CHCHD2 mutants were analysed in SH-SY5Y cells. We used the Fishers exact test to calculate the significance of allele frequencies between patients with sporadic Parkinsons disease and unaffected controls, and we calculated odds ratios and 95% CIs of minor alleles. FINDINGS We identified a missense mutation (CHCHD2, 182C>T, Thr61Ile) in family A by next-generation sequencing. We obtained samples from a further 340 index patients with autosomal dominant Parkinsons disease, 517 patients with sporadic Parkinsons disease, and 559 controls. Three CHCHD2 mutations in four of 341 index cases from independent families with autosomal dominant Parkinsons disease were detected by CHCHD2 mutation screening: 182C>T (Thr61Ile), 434G>A (Arg145Gln), and 300+5G>A. Two single nucleotide variants (-9T>G and 5C>T) in CHCHD2 were confirmed to have different frequencies between sporadic Parkinsons disease and controls, with odds ratios of 2·51 (95% CI 1·48-4·24; p=0·0004) and 4·69 (1·59-13·83, p=0·0025), respectively. One single nucleotide polymorphism (rs816411) was found in CHCHD2 from a previously reported genome-wide association study; however, there was no significant difference in its frequency between patients with Parkinsons disease and controls in a previously reported genome-wide association study (odds ratio 1·17, 95% CI 0·96-1·19; p=0·22). In SH-SY5Y cells, the 300+5G>A mutation but not the other two mutations caused exon 2 skipping. INTERPRETATION CHCHD2 mutations are associated with, and might be a cause of, autosomal dominant Parkinsons disease. Further genetic studies in other populations are needed to confirm the pathogenicity of CHCHD2 mutations in autosomal dominant Parkinsons disease and susceptibility for sporadic Parkinsons disease, and further functional studies are needed to understand how mutant CHCHD2 might play a part in the pathophysiology of Parkinsons disease. FUNDING Japan Society for the Promotion of Science; Japanese Ministry of Education, Culture, Sports, Science and Technology; Japanese Ministry of Health, Labour and Welfare; Takeda Scientific Foundation; Cell Science Research Foundation; and Nakajima Foundation.


Circulation Research | 2011

Caloric Restriction Primes Mitochondria for Ischemic Stress by Deacetylating Specific Mitochondrial Proteins of the Electron Transport Chain

Ken Shinmura; Kayoko Tamaki; Motoaki Sano; Naomi Nakashima-Kamimura; Alexander M. Wolf; Taku Amo; Shigeo Ohta; Yoshinori Katsumata; Keiichi Fukuda; Kyoko Ishiwata; Makoto Suematsu; Takeshi Adachi

Rationale: Caloric restriction (CR) confers cardioprotection against ischemia/reperfusion injury. However, the exact mechanism(s) underlying CR-induced cardioprotection remain(s) unknown. Recent evidence indicates that Sirtuins, NAD+-dependent deacetylases, regulate various favorable aspects of the CR response. Thus, we hypothesized that deacetylation of specific mitochondrial proteins during CR preserves mitochondrial function and attenuates production of reactive oxygen species during ischemia/reperfusion. Objective: The objectives of the present study were (1) to investigate the effect of CR on mitochondrial function and mitochondrial proteome and (2) to investigate what molecular mechanisms mediate CR-induced cardioprotection. Methods and Results: Male 26-week-old Fischer344 rats were randomly divided into ad libitum–fed and CR (40% reduction) groups for 6 months. No change was observed in basal mitochondrial function, but CR preserved postischemic mitochondrial respiration and attenuated postischemic mitochondrial H2O2 production. CR decreased the level of acetylated mitochondrial proteins that were associated with enhanced Sirtuin activity in the mitochondrial fraction. We confirmed a significant decrease in the acetylated forms of NDUFS1 and cytochrome bc1 complex Rieske subunit in the CR heart. Low-dose Resveratrol treatment mimicked the effect of CR on deacetylating them and attenuated reactive oxygen species production during anoxia/reoxygenation in cultured cardiomyocytes without changing the expression levels of manganese superoxide dismutase. Treatment with nicotinamide completely abrogated the effect of low-dose Resveratrol. Conclusions: These results strongly suggest that CR primes mitochondria for stress resistance by deacetylating specific mitochondrial proteins of the electron transport chain. Targeted deacetylation of NDUFS1 and/or Rieske subunit might have potential as a novel therapeutic approach for cardioprotection against ischemia/reperfusion.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2010

Time course of ROS production in skeletal muscle mitochondria from chronic heat-exposed broiler chicken

M.A.K. Azad; Motoi Kikusato; S. Sudo; Taku Amo; Masaaki Toyomizu

This study was designed to elucidate physiological changes of skeletal muscle mitochondria from broiler chickens (Gallus gallus) during chronic heat exposure. Chickens (19-day-old) were exposed to either constant heat stress (34 degrees C) or kept at control temperature (24 degrees C) for 14days. Mitochondrial ROS production for control group showed little changes during the experimental periods, whereas that for the heat-stressed group was increased after 3, 5 and 9days of heat exposure and returned to original levels at day 14. Mitochondrial membrane potential in state 4 for heat-stressed birds was higher than those of control birds after 3 and 5days, but was not at day 14. Mitochondrial oxygen consumption rate in state 3 was increased after 3 and 5days, and also returned to original levels by day 14. These results suggest that chronic heat stress induces increased ROS production in skeletal muscle mitochondria, probably via elevation of the membrane potential in state 4, resulting from enhanced oxygen consumption in the initial stage of heat exposure. These physiological changes were no longer observed at day 14, possibly because the animals had acclimatized to environmental heat stress.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2011

Meat-type chickens have a higher efficiency of mitochondrial oxidative phosphorylation than laying-type chickens.

Masaaki Toyomizu; Motoi Kikusato; Yusuke Kawabata; Md. Abul Kalam Azad; Eriko Inui; Taku Amo

Meat-type chickens show high feed efficiency and have a very rapid growth rate compared with laying-type chickens. To clarify whether the type-specific difference in feed conversion efficiency is involved in mitochondrial bioenergetics, modular kinetic analysis was applied to oxidative phosphorylation in skeletal muscle mitochondria of both type chickens. Mitochondria from skeletal muscle of meat-type chickens showed greater substrate oxidation and phosphorylating activities, and less proton leak than those of the laying-type, resulting in a higher efficiency of oxidative phosphorylation. Gene expression and protein content of uncoupling protein (avUCP) but not adenine nucleotide translocase (avANT) gene expression were lower in skeletal muscle mitochondria of meat-type chickens than the laying-type. The current results regarding a higher efficiency of oxidative phosphorylation and UCP content may partially support the high feed efficiency of meat-type chickens.


Neuroscience Letters | 2014

Detailed analysis of mitochondrial respiratory chain defects caused by loss of PINK1.

Taku Amo; Shinji Saiki; Tadashi Sawayama; Shigeto Sato; Nobutaka Hattori

Mutations in PTEN-induced putative kinase 1 (PINK1) cause recessive forms of Parkinsons disease (PD). PINK1 acts upstream of parkin, regulating mitochondrial elimination (mitophagy) in cultured cells treated with mitochondrial uncouplers that cause mitochondrial depolarization. PINK1 loss-of-function decreases mitochondrial membrane potential, resulting in mitochondrial dysfunction, although the exact function of PINK1 in mitochondria has not been fully elucidated. We have previously found that PINK1 deficiency causes a decrease in mitochondrial membrane potential, which is not due to a proton leak, but to respiratory chain defects. Here, we examine mitochondrial respiratory chain defects in PINK1-deficient cells, and find both complex I and complex III are defective. These results suggest that mitochondrial respiratory chain defects may be associated with PD pathogenesis caused by mutations in the PINK1 gene.


FEBS Letters | 2010

Application of modular kinetic analysis to mitochondrial oxidative phosphorylation in skeletal muscle of birds exposed to acute heat stress.

Motoi Kikusato; Jon J. Ramsey; Taku Amo; Masaaki Toyomizu

We previously showed that heat stress stimulates reactive oxygen species (ROS) production in skeletal muscle mitochondria of birds, probably via an elevation in mitochondrial membrane potential (ΔΨ). To clarify the mechanism underlying the elevation of ΔΨ, modular kinetic analysis was applied to oxidative phosphorylation in skeletal muscle mitochondria of heat‐stressed birds (34 °C for 12 h). In the birds exposed to heat stress, ‘substrate oxidation’ (a ΔΨ‐producer) was increased compared to control (24 °C) birds, although there was little difference in ‘proton leak’ (a ΔΨ‐consumer), suggesting that an elevation in the ΔΨ at state 4 may be due to enhanced substrate oxidation. It thus appears that enhanced substrate oxidation plays a crucial role in the overproduction of ROS for heat‐stressed birds, probably via elevated ΔΨ.


Scientific Reports | 2017

Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s disease

Shinji Saiki; Taku Hatano; Motoki Fujimaki; Kei-Ichi Ishikawa; Akio Mori; Yutaka Oji; Ayami Okuzumi; Takeshi Fukuhara; Takahiro Koinuma; Yoko Imamichi; Miho Nagumo; Norihiko Furuya; Shuko Nojiri; Taku Amo; Kazuo Yamashiro; Nobutaka Hattori

Increasing evidence shows that metabolic abnormalities in body fluids are distinguishing features of the pathophysiology of Parkinson’s disease. However, a non-invasive approach has not been established in the earliest or pre-symptomatic phases. Here, we report comprehensive double-cohort analyses of the metabolome using capillary electrophoresis/liquid chromatography mass-spectrometry. The plasma analyses identified 18 Parkinson’s disease-specific metabolites and revealed decreased levels of seven long-chain acylcarnitines in two Parkinson’s disease cohorts (n = 109, 145) compared with controls (n = 32, 45), respectively. Furthermore, statistically significant decreases in five long-chain acylcarnitines were detected in Hoehn and Yahr stage I. Likewise, decreased levels of acylcarnitine(16:0), a decreased ratio of acylcarnitine(16:0) to fatty acid(16:0), and an increased index of carnitine palmitoyltransferase 1 were identified in Hoehn and Yahr stage I of both cohorts, suggesting of initial β-oxidation suppression. Receiver operating characteristic curves produced using 12–14 long-chain acylcarnitines provided a large area of under the curve, high specificity and moderate sensitivity for diagnosing Parkinson’s disease. Our data demonstrate that a primary decrement of mitochondrial β-oxidation and that 12–14 long-chain acylcarnitines decreases would be promising diagnostic biomarkers for Parkinson’s disease.


Journal of Poultry Science | 2018

Characterization of Mitochondrial Content and Respiratory Capacities of Broiler Chicken Skeletal Muscles with Different Muscle Fiber Compositions

Yuki Hakamata; Kouichi Watanabe; Taku Amo; Masaaki Toyomizu; Motoi Kikusato

Mitochondrial content is regarded a useful feature to distinguish muscle-fiber types in terms of energy metabolism in skeletal muscles. Increasing evidence suggests that specific mitochondrial bioenergetic phenotypes exist in metabolically different muscle fibers. A few studies have examined the energetic properties of skeletal muscle in domestic fowls; however, no information on muscle bioenergetics in broiler chickens selectively bred for faster growth is available. In this study, we aimed to characterize the mitochondrial contents and functions of chicken skeletal muscle consisting entirely of type I (oxidative) (M. pubo-ischio-femoralis pars medialis), type IIA (glycolytic/oxidative) (M. pubo-ischio-femoralis pars lateralis), and type IIB (glycolytic) (M. pectoralis) muscle fibers. Citrate synthase (CS) activity was the highest in type IIA muscle tissues and isolated mitochondria, among the muscle tissues tested. Although no difference was registered in mitochondrial CS activity between type IIB and type I muscles, tissue CS activity was significantly higher in the latter. Histochemical staining for NADH tetrazolium reductase and the ratio of muscle-tissue to mitochondrial CS activity indicated that type I, type IIA, and type IIB muscle-fiber types showed decreasing mitochondrial content. Mitochondria from type I muscle exhibited a higher coupled respiration rate induced by pyruvate/malate, palmitoyl-CoA/malate, and palmitoyl-carnitine, as respiratory substrates, than type IIB-muscle mitochondria, while the response of mitochondria from type IIA muscle to those substrates was comparable to that of mitochondria from type I muscle. Type IIA-muscle mitochondria exhibited the highest carnitine palmitoyltransferase-2 level among all tissues tested, which may contribute to the higher fatty acid oxidation in these mitochondria. The results suggest that mitochondrial abundance is one of the features differentiating metabolic characteristics of different chicken skeletal muscle types. Moreover, the study demonstrated that type IIA-muscle mitochondria may have distinct metabolic capacities.


Scientific Reports | 2017

Cisplatin selects short forms of the mitochondrial DNA OriB variant (16184–16193 poly-cytosine tract), which confer resistance to cisplatin

Taku Amo; Naomi Kamimura; Hiromasa Asano; Sadamitsu Asoh; Shigeo Ohta

A number of alternations in mitochondrial DNA (mtDNA) have been reported in different types of cancers, and the role of mtDNA in cancer has been attracting increasing interest. In order to investigate the relationship between mtDNA alternations and chemosensitivity, we constructed cybrid (trans-mitochondrial hybrid) cell lines carrying a HeLa nucleus and the mtDNA of healthy individuals because of the presence of somatic alternations in the mtDNA of many cancer cells. After a treatment with 1.0 μg/mL cisplatin for 10 days, we isolated 100 cisplatin-resistant clones, 70 of which carried the shorter mtDNA OriB variant (16184–16193 poly-cytosine tract), which was located in the control region of mtDNA. Whole mtDNA sequencing of 10 clones revealed no additional alternations. Re-construction of the HeLa nucleus and mtDNA from cisplatin-resistant cells showed that cisplatin resistance was only acquired by mtDNA alternations in the control region, and not by possible alternation(s) in the nuclear genome.

Collaboration


Dive into the Taku Amo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge