Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeto Sato is active.

Publication


Featured researches published by Shigeto Sato.


Journal of Cell Biology | 2010

PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy

Noriyuki Matsuda; Shigeto Sato; Kahori Shiba; Kei Okatsu; Keiko Saisho; Clement A. Gautier; Yu-shin Sou; Shinji Saiki; Sumihiro Kawajiri; Fumiaki Sato; Mayumi Kimura; Masaaki Komatsu; Nobutaka Hattori; Keiji Tanaka

Defective mitochondrial quality control is shown to be a mechanism for neurodegeneration in some forms of Parkinsons disease.


Genes to Cells | 2010

p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria

Kei Okatsu; Keiko Saisho; Midori Shimanuki; Kazuto Nakada; Hiroshi Shitara; Yu-shin Sou; Mayumi Kimura; Shigeto Sato; Nobutaka Hattori; Masaaki Komatsu; Keiji Tanaka; Noriyuki Matsuda

PINK1 and Parkin were first identified as the causal genes responsible for familial forms of early‐onset Parkinson’s disease (PD), a prevalent neurodegenerative disorder. PINK1 encodes a mitochondrial serine/threonine protein kinase, whereas Parkin encodes an ubiquitin‐protein ligase. PINK1 and Parkin cooperate to maintain mitochondrial integrity; however, the detailed molecular mechanism of how Parkin‐catalyzed ubiquitylation results in mitochondrial integrity remains an enigma. In this study, we show that Parkin‐catalyzed K63‐linked polyubiquitylation of depolarized mitochondria resulted in ubiquitylated mitochondria being transported along microtubules to cluster in the perinuclear region, which was interfered by pathogenic mutations of Parkin. In addition, p62/SQSTM1 (hereafter referred to as p62) was recruited to depolarized mitochondria after Parkin‐directed ubiquitylation. Intriguingly, deletion of p62 in mouse embryonic fibroblasts resulted in a gross loss of mitochondrial perinuclear clustering but did not hinder mitochondrial degradation. Thus, p62 is required for ubiquitylation‐dependent clustering of damaged mitochondria, which resembles p62‐mediated ‘aggresome’ formation of misfolded/unfolded proteins after ubiquitylation.


Scientific Reports | 2012

PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy

Kahori Shiba-Fukushima; Yuzuru Imai; Shigeharu Yoshida; Yasushi Ishihama; Tomoko Kanao; Shigeto Sato; Nobutaka Hattori

Parkinsons disease genes PINK1 and parkin encode kinase and ubiquitin ligase, respectively. The gene products PINK1 and Parkin are implicated in mitochondrial autophagy, or mitophagy. Upon the loss of mitochondrial membrane potential (ΔΨm), cytosolic Parkin is recruited to the mitochondria by PINK1 through an uncharacterised mechanism – an initial step triggering sequential events in mitophagy. This study reports that Ser65 in the ubiquitin-like domain (Ubl) of Parkin is phosphorylated in a PINK1-dependent manner upon depolarisation of ΔΨm. The introduction of mutations at Ser65 suggests that phosphorylation of Ser65 is required not only for the efficient translocation of Parkin, but also for the degradation of mitochondrial proteins in mitophagy. Phosphorylation analysis of Parkin pathogenic mutants also suggests Ser65 phosphorylation is not sufficient for Parkin translocation. Our study partly uncovers the molecular mechanism underlying the PINK1-dependent mitochondrial translocation and activation of Parkin as an initial step of mitophagy.


Autophagy | 2011

Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition

Shinji Saiki; Yukiko Sasazawa; Yoko Imamichi; Sumihiro Kawajiri; Takahiro Fujimaki; Isei Tanida; Hiroki Kobayashi; Fumiaki Sato; Shigeto Sato; Kei Ichi Ishikawa; Masaya Imoto; Nobutaka Hattori

Caffeine is one of the most frequently ingested neuroactive compounds. All known mechanisms of apoptosis induced by caffeine act through cell cycle modulation or p53 induction. It is currently unknown whether caffeine-induced apoptosis is associated with other cell death mechanisms, such as autophagy. Herein we show that caffeine increases both the levels of microtubule-associated protein 1 light chain 3-II and the number of autophagosomes, through the use of western blotting, electron microscopy and immunocytochemistry techniques. Phosphorylated p70 ribosomal protein S6 kinase (Thr389), S6 ribosomal protein (Ser235/236), 4E-BP1 (Thr37/46) and Akt (Ser473) were significantly decreased by caffeine. In contrast, ERK1/2 (Thr202/204) was increased by caffeine, suggesting an inhibition of the Akt/mTOR/p70S6K pathway and activation of the ERK1/2 pathway. Although insulin treatment phosphorylated Akt (Ser473) and led to autophagy suppression, the effect of insulin treatment was completely abolished by caffeine addition. Caffeine-induced autophagy was not completely blocked by inhibition of ERK1/2 by U0126. Caffeine induced reduction of mitochondrial membrane potentials and apoptosis in a dose-dependent manner, which was further attenuated by the inhibition of autophagy with 3-methyladenine or Atg7 siRNA knockdown. Furthermore, there was a reduced number of early apoptotic cells (annexin V positive, propidium iodide negative) among autophagy-deficient mouse embryonic fibroblasts treated with caffeine than their wild-type counterparts. These results support previous studies on the use of caffeine in the treatment of human tumors and indicate a potential new target in the regulation of apoptosis.


Nature Communications | 2012

PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria

Kei Okatsu; Toshihiko Oka; Masahiro Iguchi; Kenji Imamura; Hidetaka Kosako; Naoki Tani; Mayumi Kimura; Etsu Go; Fumika Koyano; Manabu Funayama; Kahori Shiba-Fukushima; Shigeto Sato; Hideaki Shimizu; Yuko Fukunaga; Hisaaki Taniguchi; Masaaki Komatsu; Nobutaka Hattori; Katsuyoshi Mihara; Keiji Tanaka; Noriyuki Matsuda

Dysfunction of PINK1, a mitochondrial Ser/Thr kinase, causes familial Parkinsons disease (PD). Recent studies have revealed that PINK1 is rapidly degraded in healthy mitochondria but accumulates on the membrane potential (ΔΨm)-deficient mitochondria, where it recruits another familial PD gene product, Parkin, to ubiquitylate the damaged mitochondria. Despite extensive study, the mechanism underlying the homeostatic control of PINK1 remains unknown. Here we report that PINK1 is autophosphorylated following a decrease in ΔΨm and that most disease-relevant mutations hinder this event. Mass spectrometric and mutational analyses demonstrate that PINK1 autophosphorylation occurs at Ser228 and Ser402, residues that are structurally clustered together. Importantly, Ala mutation of these sites abolishes autophosphorylation of PINK1 and inhibits Parkin recruitment onto depolarized mitochondria, whereas Asp (phosphorylation-mimic) mutation promotes mitochondrial localization of Parkin even though autophosphorylation was still compromised. We propose that autophosphorylation of Ser228 and Ser402 in PINK1 is essential for efficient mitochondrial localization of Parkin.


Molecular Brain | 2012

Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue

Yoichi Imaizumi; Yohei Okada; Wado Akamatsu; Masato Koike; Naoko Kuzumaki; Hideki Hayakawa; Tomoko Nihira; Tetsuro Kobayashi; Manabu Ohyama; Shigeto Sato; Masashi Takanashi; Manabu Funayama; Akiyoshi Hirayama; Tomoyoshi Soga; Takako Hishiki; Makoto Suematsu; Takuya Yagi; Daisuke Ito; Arifumi Kosakai; Kozo Hayashi; Masanobu Shouji; Atsushi Nakanishi; Norihiro Suzuki; Mizuno Y; Noboru Mizushima; Masayuki Amagai; Yasuo Uchiyama; Hideki Mochizuki; Nobutaka Hattori; Hideyuki Okano

BackgroundParkinson’s disease (PD) is a neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra (SN). The familial form of PD, PARK2, is caused by mutations in the parkin gene. parkin-knockout mouse models show some abnormalities, but they do not fully recapitulate the pathophysiology of human PARK2.ResultsHere, we generated induced pluripotent stem cells (iPSCs) from two PARK2 patients. PARK2 iPSC-derived neurons showed increased oxidative stress and enhanced activity of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. iPSC-derived neurons, but not fibroblasts or iPSCs, exhibited abnormal mitochondrial morphology and impaired mitochondrial homeostasis. Although PARK2 patients rarely exhibit Lewy body (LB) formation with an accumulation of α-synuclein, α-synuclein accumulation was observed in the postmortem brain of one of the donor patients. This accumulation was also seen in the iPSC-derived neurons in the same patient.ConclusionsThus, pathogenic changes in the brain of a PARK2 patient were recapitulated using iPSC technology. These novel findings reveal mechanistic insights into the onset of PARK2 and identify novel targets for drug screening and potential modified therapies for PD.


FEBS Letters | 2010

PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy.

Sumihiro Kawajiri; Shinji Saiki; Shigeto Sato; Fumiaki Sato; Taku Hatano; Hiroto Eguchi; Nobutaka Hattori

MINT‐7557173: LC3 (uniprotkb:Q9GZQ8) physically interacts (MI:0915) with PINK1 (uniprotkb:Q9BXM7) by anti bait coimmunoprecipitation (MI:0006)


The EMBO Journal | 2006

14‐3‐3η is a novel regulator of parkin ubiquitin ligase

Shigeto Sato; Tomoki Chiba; Eri Sakata; Koichi Kato; Yoshikuni Mizuno; Nobutaka Hattori; Keiji Tanaka

Mutation of the parkin gene, which encodes an E3 ubiquitin‐protein ligase, is the major cause of autosomal recessive juvenile parkinsonism (ARJP). Although various substrates for parkin have been identified, the mechanisms that regulate the ubiquitin ligase activity of parkin are poorly understood. Here we report that 14‐3‐3η, a chaperone‐like protein present abundantly in neurons, could bind to parkin and negatively regulate its ubiquitin ligase activity. Furthermore, 14‐3‐3η could bind to the linker region of parkin but not parkin with ARJP‐causing R42P, K161N, and T240R mutations. Intriguingly, α‐synuclein (α‐SN), another familial Parkinsons disease (PD) gene product, abrogated the 14‐3‐3η‐induced suppression of parkin activity. α‐SN could bind tightly to 14‐3‐3η and consequently sequester it from the parkin–14‐3‐3η complex. PD‐causing A30P and A53T mutants of α‐SN could not bind 14‐3‐3η, and failed to activate parkin. Our findings indicate that 14‐3‐3η is a regulator that functionally links parkin and α‐SN. The α‐SN‐positive and 14‐3‐3η‐negative control of parkin activity sheds new light on the pathophysiological roles of parkin.


Journal of Neurochemistry | 2009

Pathogenesis of familial Parkinson's disease: new insights based on monogenic forms of Parkinson's disease

Taku Hatano; Shin-ichiro Kubo; Shigeto Sato; Nobutaka Hattori

Parkinson’s disease (PD) is one of the most common movement disorders caused by the loss of dopaminergic neuronal cells. The molecular mechanisms underlying neuronal degeneration in PD remain unknown; however, it is now clear that genetic factors contribute to the pathogenesis of this disease. Approximately, 5% of patients with clinical features of PD have clear familial etiology, which show a classical recessive or dominant Mendelian mode of inheritance. Over the decade, more than 15 loci and 11 causative genes have been identified so far and many studies shed light on their implication in not only monogenic but also sporadic form of PD. Recent studies revealed that PD‐associated genes play important roles in cellular functions, such as mitochondrial functions, ubiquitin‐proteasomal system, autophagy‐lysosomal pathway and membrane trafficking. Furthermore, the proteins encoded by PD‐associated genes can interact with each other and such gene products may share a common pathway that leads to nigral degeneration. However, their precise roles in the disease and their normal functions remain poorly understood. In this study, we review recent progress in knowledge about the genes associated with familial PD.


Neurology | 2005

Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease

Shigeto Sato; Yoshikuni Mizuno; Nobutaka Hattori

8-Hydroxydeoxyguanosine (8-OHdG) has been used to evaluate oxidative stress. The authors investigated urinary 8-OHdG levels in 72 patients with Parkinson disease (PD) and in normal and disease control groups. The mean urinary 8-OHdG increased with the stage of PD and was not influenced by the current dose of DOPA. Our results suggest that urinary 8-OHdG is a potentially useful biomarker for evaluating the progression of PD.

Collaboration


Dive into the Shigeto Sato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiji Tanaka

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge