Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tammi L. Johnson is active.

Publication


Featured researches published by Tammi L. Johnson.


Journal of Medical Entomology | 2016

Habitat Suitability Model for the Distribution of Ixodes scapularis (Acari: Ixodidae) in Minnesota

Tammi L. Johnson; J. K. H. Bjork; D. F. Neitzel; F. M. Dorr; E. K. Schiffman; Rebecca J. Eisen

Abstract Ixodes scapularis Say, the black-legged tick, is the primary vector in the eastern United States of several pathogens causing human diseases including Lyme disease, anaplasmosis, and babesiosis. Over the past two decades, I. scapularis-borne diseases have increased in incidence as well as geographic distribution. Lyme disease exists in two major foci in the United States, one encompassing northeastern states and the other in the Upper Midwest. Minnesota represents a state with an appreciable increase in counties reporting I. scapularis-borne illnesses, suggesting geographic expansion of vector populations in recent years. Recent tick distribution records support this assumption. Here, we used those records to create a fine resolution, subcounty-level distribution model for I. scapularis using variable response curves in addition to tests of variable importance. The model identified 19% of Minnesota as potentially suitable for establishment of the tick and indicated with high accuracy (AUC = 0.863) that the distribution is driven by land cover type, summer precipitation, maximum summer temperatures, and annual temperature variation. We provide updated records of established populations near the northwestern species range limit and present a model that increases our understanding of the potential distribution of I. scapularis in Minnesota.


Journal of Medical Entomology | 2017

Modeling the Environmental Suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Contiguous United States

Tammi L. Johnson; Ubydul Haque; Andrew J. Monaghan; Lars Eisen; Micah B. Hahn; Mary H. Hayden; Harry M. Savage; Janet McAllister; John-Paul Mutebi; Rebecca J. Eisen

Abstract The mosquitoes Aedes (Stegomyia) aegypti (L.)(Diptera:Culicidae) and Ae. (Stegomyia) albopictus (Skuse) (Diptera:Culicidae) transmit dengue, chikungunya, and Zika viruses and represent a growing public health threat in parts of the United States where they are established.To complement existing mosquito presence records based on discontinuous, non-systematic surveillance efforts, we developed county-scale environmental suitability maps for both species using maximum entropy modeling to fit climatic variables to county presence records from 1960–2016 in the contiguous United States. The predictive models for Ae. aegypti and Ae. albopictus had an overall accuracy of 0.84 and 0.85, respectively. Cumulative growing degree days (GDDs) during the winter months, an indicator of overall warmth, was the most important predictive variable for both species and was positively associated with environmental suitability. The number (percentage) of counties classified as environmentally suitable, based on models with 90 or 99% sensitivity, ranged from 1,443 (46%) to 2,209 (71%) for Ae. aegypti and from 1,726 (55%) to 2,329 (75%) for Ae. albopictus. Increasing model sensitivity results in more counties classified as suitable, at least for summer survival, from which there are no mosquito records. We anticipate that Ae. aegypti and Ae. albopictus will be found more commonly in counties classified as suitable based on the lower 90% sensitivity threshold compared with the higher 99% threshold. Counties predicted suitable with 90% sensitivity should therefore be a top priority for expanded mosquito surveillance efforts while still keeping in mind that Ae. aegypti and Ae. albopictus may be introduced, via accidental transport of eggs or immatures, and potentially proliferate during the warmest part of the year anywhere within the geographic areas delineated by the 99% sensitivity model.


Journal of Medical Entomology | 2017

Isolation of the Lyme Disease Spirochete Borrelia mayonii From Naturally Infected Rodents in Minnesota

Tammi L. Johnson; Christine B. Graham; Andrias Hojgaard; Nicole E. Breuner; Sarah E. Maes; Karen A. Boegler; Adam J. Replogle; Luke C. Kingry; Jeannine M. Petersen; Lars Eisen; Rebecca J. Eisen

Abstract Borrelia mayonii is a newly described member of the Borrelia burgdorferi sensu lato complex that is vectored by the black-legged tick (Ixodes scapularis Say) and a cause of Lyme disease in Minnesota and Wisconsin. Vertebrate reservoir hosts involved in the enzootic maintenance of B. mayonii have not yet been identified. Here, we describe the first isolation of B. mayonii from naturally infected white-footed mice (Peromyscus leucopus Rafinesque) and an American red squirrel (Tamiasciurus hudsonicus Erxleben) from Minnesota, thus implicating these species as potential reservoir hosts for this newly described spirochete.


Journal of Medical Entomology | 2016

Infection Prevalence, Bacterial Loads, and Transmission Efficiency in Oropsylla montana (Siphonaptera: Ceratophyllidae) One Day After Exposure to Varying Concentrations of Yersinia pestis in Blood

Karen A. Boegler; Christine B. Graham; Tammi L. Johnson; John A. Montenieri; Rebecca J. Eisen

Abstract Unblocked fleas can transmit Yersinia pestis, the bacterium that causes plague, shortly (≤4 d) after taking an infectious bloodmeal. Investigators have measured so-called early-phase transmission (EPT) efficiency in various fleas following infection with highly bacteremic blood (≥108 cfu/ml). To date, no one has determined the lower limit of bacteremia required for fleas to acquire and transmit infection by EPT, though knowing this threshold is central to determining the length of time a host may be infectious to feeding fleas. Here, we evaluate the ability of Oropsylla montana (Baker) to acquire and transmit Y. pestis after feeding on blood containing 103 to 109 cfu/ ml. We evaluated the resulting infection prevalence, bacterial loads, and transmission efficiency within the early-phase time period at 1 d postinfection. Fleas acquired infection from bacteremic blood across a wide range of concentrations, but transmission was observed only when fleas ingested highly bacteremic blood.


Journal of Medical Entomology | 2016

Prevalence and Diversity of Tick-Borne Pathogens in Nymphal Ixodes scapularis (Acari: Ixodidae) in Eastern National Parks

Tammi L. Johnson; Christine B. Graham; Karen A. Boegler; Cara Cherry; Sarah E. Maes; Mark A. Pilgard; Andrias Hojgaard; Danielle Buttke; Rebecca J. Eisen

Abstract Tick-borne pathogens transmitted by Ixodes scapularis Say (Acari: Ixodidae), also known as the deer tick or blacklegged tick, are increasing in incidence and geographic distribution in the United States. We examined the risk of tick-borne disease exposure in 9 national parks across six Northeastern and Mid-Atlantic States and the District of Columbia in 2014 and 2015. To assess the recreational risk to park visitors, we sampled for ticks along frequently used trails and calculated the density of I. scapularis nymphs (DON) and the density of infected nymphs (DIN). We determined the nymphal infection prevalence of I. scapularis with a suite of tick-borne pathogens including Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti. Ixodes scapularis nymphs were found in all national park units; DON ranged from 0.40 to 13.73 nymphs per 100 m2. Borrelia burgdorferi, the causative agent of Lyme disease, was found at all sites where I. scapularis was documented; DIN with B. burgdorferi ranged from 0.06 to 5.71 nymphs per 100 m2. Borrelia miyamotoi and A. phagocytophilum were documented at 60% and 70% of the parks, respectively, while Ba. microti occurred at just 20% of the parks. Ixodes scapularis is well established across much of the Northeastern and Mid-Atlantic States, and our results are generally consistent with previous studies conducted near the areas we sampled. Newly established I. scapularis populations were documented in two locations: Washington, D.C. (Rock Creek Park) and Greene County, Virginia (Shenandoah National Park). This research demonstrates the potential risk of tick-borne pathogen exposure in national parks and can be used to educate park visitors about the importance of preventative actions to minimize tick exposure.


Parasites & Vectors | 2016

Host associations and genomic diversity of Borrelia hermsii in an endemic focus of tick-borne relapsing fever in western North America

Tammi L. Johnson; Robert J. Fischer; Sandra J. Raffel; Tom G. Schwan

BackgroundAn unrecognized focus of tick-borne relapsing fever caused by Borrelia hermsii was identified in 2002 when five people became infected on Wild Horse Island in Flathead Lake, Montana. The terrestrial small mammal community on the island is composed primarily of pine squirrels (Tamiasciurus hudsonicus) and deer mice (Peromyscus maniculatus), neither of which was known as a natural host for the spirochete. Thus a 3-year study was performed to identify small mammals as hosts for B. hermsii.MethodsSmall mammals were captured alive on two island and three mainland sites, blood samples were collected and examined for spirochetes, and serological tests performed to detect anti-B. hermsii antibodies. Ornithodoros hermsi ticks were collected and fed on laboratory mice to assess infection. Genomic DNA samples from spirochetes isolated from infected mammals and ticks were analyzed by multilocus sequence typing.ResultsEighteen pine squirrels and one deer mouse had detectable spirochetemias when captured, from which 12 isolates of B. hermsii were established. Most pine squirrels were seropositive, and the five species of sciurids combined had a significantly higher prevalence of seropositive animals than did the other six small mammal species captured. The greater diversity of small mammals on the mainland in contrast to the islands demonstrated that other species in addition to pine squirrels were also involved in the maintenance of B. hermsii at Flathead Lake. Ornithodoros hermsi ticks produced an additional 12 isolates of B. hermsii and multilocus sequence typing identified both genomic groups of B. hermsii described previously, and identified a new genomic subdivision. Experimental infections of deer mice with two strains of B. hermsii demonstrated that these animals were susceptible to infection with spirochetes belonging to Genomic Group II but not Genomic Group I.ConclusionsPine squirrels are the primary hosts for the maintenance of B. hermsii on the islands in Flathead Lake, however serological evidence showed that numerous additional species are also involved on the mainland. Future studies testing the susceptibility of several small mammal species to infection with different genetic types of B. hermsii will help define their role as hosts in this and other endemic foci.


Journal of Medical Entomology | 2018

Prevalence and Geographic Distribution of Borrelia miyamotoi in Host-Seeking Ixodes pacificus (Acari: Ixodidae) Nymphs in Mendocino County, California

Geoffrey E Lynn; Christine B. Graham; Kalanthe Horiuchi; Lars Eisen; Tammi L. Johnson; Robert S. Lane; Rebecca J. Eisen

Borrelia miyamotoi is an increasingly recognized human pathogen transmitted by Ixodes ticks in the Northern Hemisphere. In North America, infection prevalences of B. miyamotoi are characteristically low (<10%) in Ixodes scapularis (Say; Acari: Ixodidae) and Ixodes pacificus (Cooley & Kohls; Acari: Ixodidae), both of which readily bite humans. We tested 3,255 host-seeking I. pacificus nymphs collected in 2004 from 79 sites throughout Mendocino County in north-coastal California for presence of B. miyamotoi. The collection sites represented a variety of forest types ranging from hot, dry oak woodlands in the southeast, to coastal redwoods in the west, and Ponderosa pine and Douglas fir-dominated areas in the northern part of the county. We found that B. miyamotoi was geographically widespread, but infected I. pacificus nymphs infrequently (cumulative prevalence of 1.4%). Infection prevalence was not significantly associated with geographic region or woodland type, and neither density of host-seeking nymphs, nor infection with Borrelia burgdorferi sensu stricto was associated with B. miyamotoi infection status in individual ticks. Because B. burgdorferi prevalence at the same sites was previously associated with woodland type and nymphal density, our results suggest that despite sharing a common vector, the primary modes of enzootic maintenance for the two pathogens are likely different.


American Journal of Tropical Medicine and Hygiene | 2018

An Acarological Risk Model Predicting the Density and Distribution of Host-Seeking Ixodes scapularis Nymphs in Minnesota

Tammi L. Johnson; Karen A. Boegler; Rebecca J. Clark; Mark J. Delorey; Jenna Bjork; Frances M. Dorr; Elizabeth Schiffman; David F. Neitzel; Andrew J. Monaghan; Rebecca J. Eisen

Abstract. Ixodes scapularis is the vector of at least seven human pathogens in Minnesota, two of which are known to cause Lyme disease (Borrelia burgdorferi sensu stricto and Borrelia mayonii). In Minnesota, the statewide incidence of Lyme disease and other I. scapularis–borne diseases and the geographic extent over which cases have been reported have both increased substantially over the last two decades. These changes correspond with an expanding distribution of I. scapularis over a similar time frame. Because the risk of exposure to I. scapularis–borne pathogens is likely related to the number of ticks encountered, we developed an acarological risk model predicting the density of host-seeking I. scapularis nymphs (DON) in Minnesota. The model was informed by sampling 81 sites located in 42 counties in Minnesota. Two main foci were predicted by the model to support elevated densities of host-seeking I. scapularis nymphs, which included the seven-county Minneapolis-St. Paul metropolitan area and counties in northern Minnesota, including Lake of the Woods and Koochiching counties. There was substantial heterogeneity observed in predicted DON across the state at the county scale; however, counties classified as high risk for I. scapularis–borne diseases and counties with known established populations of I. scapularis had the highest proportion of the county predicted as suitable for host-seeking nymphs (≥ 0.13 nymphs/100 m2). The model provides insight into areas of potential I. scapularis population expansion and identifies focal areas of predicted suitable habitat within counties where the incidence of I. scapularis–borne diseases has been historically low.


Ticks and Tick-borne Diseases | 2017

Evaluating acarological risk for exposure to Ixodes scapularis and Ixodes scapularis-borne pathogens in recreational and residential settings in Washington County, Minnesota

Micah B. Hahn; Jenna Bjork; David F. Neitzel; Frances M. Dorr; Tessa Whitemarsh; Karen A. Boegler; Christine B. Graham; Tammi L. Johnson; Sarah E. Maes; Rebecca J. Eisen

The distribution of I. scapularis, the tick vector of the bacteria that cause Lyme disease, has been expanding over the last two decades in the north-central United States in parallel with increasing incidence of human cases of Lyme disease in that region. However, assessments of residential risk for exposure to ticks are lacking from this region. Here, we measured the density of host-seeking I. scapularis nymphs in two suburban and two rural public recreational sites located in Washington County, Minnesota as well as in nearby residential properties. We sought to compare tick densities across land use types and to identify environmental factors that might impact nymphal density. We also assessed the prevalence of infection in the collected ticks with Lyme disease spirochetes (Borrelia burgdorferi sensu stricto, B. mayonii), and other I. scapularis-borne pathogens including B. miyamotoi, Babesia microti and Anaplasma phagocytophilum. Similar to studies from the eastern United States, on residential properties, I. scapularis nymphal densities were highest in the ecotonal areas between the forest edge and the lawn. Residences with the highest densities of nymphs were more likely to have a higher percentage of forest cover, log piles, and signs of deer on their property. In recreational areas, we found the highest nymphal densities both in the wooded areas next to trails as well as on mowed trails. Among the 303 host-seeking I. scapularis nymphs tested for pathogens, B. burgdorferi sensu stricto, A. phagocytophilum and B. miyamotoi were detected in 42 (13.8%), 14 (4.6%), and 2 (0.6%) nymphs, respectively.


Ticks and Tick-borne Diseases | 2018

Prevalence and distribution of seven human pathogens in host-seeking Ixodes scapularis (Acari: Ixodidae) nymphs in Minnesota, USA

Tammi L. Johnson; Christine B. Graham; Sarah E. Maes; Andrias Hojgaard; Amy Fleshman; Karen A. Boegler; Mark J. Delory; Kimetha S. Slater; Sandor E. Karpathy; Jenna Bjork; David F. Neitzel; Elizabeth Schiffman; Rebecca J. Eisen

In the north-central United States, the blacklegged tick (Ixodes scapularis) is currently known to vector seven human pathogens. These include five bacteria (Borrelia burgdorferi sensu stricto, Borrelia mayonii, Borrelia miyamotoi, Anaplasma phagocytophilum, Ehrlichia muris eauclairensis), one protozoan (Babesia microti) and one virus (Powassan). We sought to assess the prevalence and distribution of these pathogens in host-seeking nymphs collected throughout Minnesota, a state on the northwestern edge of the ticks expanding range, where reported cases of I. scapularis-borne diseases have increased in incidence and geographic range over the past decade. Among the 1240 host-seeking I. scapularis nymphs that we screened from 64 sites, we detected all seven pathogens at varying frequencies. Borrelia burgdorferi s.s. was the most prevalent and geographically widespread, found in 25.24% of all nymphs tested. Anaplasma phagocytophilum and Babesia microti were also geographically widespread, but they were less prevalent than Bo. burgdorferi s.s. (detected in 6.29% and 4.68% of ticks, respectively). Spatial clusters of sites with high prevalence for these three pathogens were identified in the north-central region of the state. Prevalence was less than 1.29% for each of the remaining pathogens. Two or more pathogens were detected in 90 nymphs (7.26%); coinfections with Bo. burgdorferi s.s. and either A. phagocytophilum (51 nymphs, 4.11%) or Ba. microti (43 nymphs, 3.47%) were the most common combinations. The distribution and density of infected ticks mirrors the distribution of notifiable tick-borne diseases in Minnesota and provides information on the distribution and prevalence of recently described human pathogens.

Collaboration


Dive into the Tammi L. Johnson's collaboration.

Top Co-Authors

Avatar

Rebecca J. Eisen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Christine B. Graham

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Karen A. Boegler

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Lars Eisen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Sarah E. Maes

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Andrias Hojgaard

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Monaghan

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

John A. Montenieri

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Micah B. Hahn

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Nicole E. Breuner

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge