Tanja Rollett
University of Graz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tanja Rollett.
The Astrophysical Journal | 2014
C. Möstl; K. Amla; J. R. Hall; Paulett C. Liewer; E. M. De Jong; Robin C. Colaninno; Astrid M. Veronig; Tanja Rollett; Manuela Temmer; V. Peinhart; J. A. Davies; Noe Lugaz; Ying D. Liu; C. J. Farrugia; J. G. Luhmann; Bojan Vršnak; R. A. Harrison; A. B. Galvin
Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front-and backsided, slow and fast CMEs (up to 2700 km s(-1)). We track the CMEs to 34.9 +/- 7.1 deg elongation from the Sun with J maps constructed using the SATPLOT tool, resulting in prediction lead times of - 26.4 +/- 15.3 hr. The geometrical models we use assume different CME front shapes (fixed-Phi, harmonic mean, self-similar expansion) and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1 +/- 6.3 hr (rms value of 10.9 hr). Speeds are consistent to within 284 +/- 288 km s(-1) . Empirical corrections to the predictions enhance their performance for the arrival times to 6.1 +/- 5.0 hr (rms value of 7.9 hr), and for the speeds to 53 +/- 50 km s(-1). These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.
The Astrophysical Journal | 2012
Manuela Temmer; Bojan Vršnak; Tanja Rollett; Bianca Bein; Curt A. de Koning; Ying D. Liu; Eckhard Bosman; J. A. Davies; C. Möstl; Tomislav Žic; Astrid M. Veronig; V. Bothmer; Richard A. Harrison; Nariaki V. Nitta; M. M. Bisi; Olga Flor; J. P. Eastwood; Dusan Odstrcil; R. J. Forsyth
We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and heliospheric imager (HI) data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field of view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; similar to 1200 km s(-1)) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; similar to 700 km s(-1)). By applying a drag-based model we are able to reproduce the kinematical profile of CME2, suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.
Geophysical Research Letters | 2010
C. Möstl; Manuela Temmer; Tanja Rollett; Charles J. Farrugia; Ying D. Liu; Astrid M. Veronig; M. Leitner; A. B. Galvin; H. K. Biernat
On 5 April 2010 an interplanetary (IP) shock was detected by the Wind spacecraft ahead of Earth, followed by a fast (average speed 650 km/s) IP coronal mass ejection (ICME). During the subsequent moderate geomagnetic storm (minimum Dst = -72 nT, maximum Kp=8-), communication with the Galaxy 15 satellite was lost. We link images from STEREO/SECCHI to the near-Earth in situ observations and show that the ICME did not decelerate much between Sun and Earth. The ICME flank was responsible for a long storm growth phase. This type of glancing collision was for the first time directly observed with the STEREO Heliospheric Imagers. The magnetic cloud (MC) inside the ICME cannot be modeled with approaches assuming an invariant direction. These observations confirm the hypotheses that parts of ICMEs classified as (1) long-duration MCs or (2) magnetic-cloud-like (MCL) structures can be a consequence of a spacecraft trajectory through the ICME flank.
The Astrophysical Journal | 2012
C. Möstl; C. J. Farrugia; E. K. J. Kilpua; L. K. Jian; Ying D. Liu; J. P. Eastwood; R. A. Harrison; David F. Webb; Manuela Temmer; Dusan Odstrcil; J. A. Davies; Tanja Rollett; J. G. Luhmann; Nariaki V. Nitta; T. Mulligan; E. A. Jensen; R. J. Forsyth; B. Lavraud; C. A. de Koning; Astrid M. Veronig; A. B. Galvin; T. L. Zhang; Brian J. Anderson
We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120 degrees in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index (approximate to-100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs.
The Astrophysical Journal | 2012
J. A. Davies; R. A. Harrison; C. H. Perry; C. Möstl; Noe Lugaz; Tanja Rollett; C. J. Davis; S. R. Crothers; Manuela Temmer; C. J. Eyles; N. P. Savani
Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed , FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transients speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transients angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.
The Astrophysical Journal | 2011
Manuela Temmer; Tanja Rollett; C. Möstl; Astrid M. Veronig; Bojan Vršnak; D. Odstrcil
We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R ☉, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.
Nature Communications | 2015
C. Möstl; Tanja Rollett; Rudy A. Frahm; Ying D. Liu; David M. Long; Robin C. Colaninno; Martin A. Reiss; Manuela Temmer; Charles J. Farrugia; Arik Posner; Mateja Dumbović; Miho Janvier; P. Démoulin; Peter D. Boakes; Andy Devos; Emil Kraaikamp; Mona L. Mays; Bojan Vršnak
The severe geomagnetic effects of solar storms or coronal mass ejections (CMEs) are to a large degree determined by their propagation direction with respect to Earth. There is a lack of understanding of the processes that determine their non-radial propagation. Here we present a synthesis of data from seven different space missions of a fast CME, which originated in an active region near the disk centre and, hence, a significant geomagnetic impact was forecasted. However, the CME is demonstrated to be channelled during eruption into a direction +37±10° (longitude) away from its source region, leading only to minimal geomagnetic effects. In situ observations near Earth and Mars confirm the channelled CME motion, and are consistent with an ellipse shape of the CME-driven shock provided by the new Ellipse Evolution model, presented here. The results enhance our understanding of CME propagation and shape, which can help to improve space weather forecasts.
The Astrophysical Journal | 2011
C. Möstl; Tanja Rollett; Noe Lugaz; C. J. Farrugia; J. A. Davies; Manuela Temmer; Astrid M. Veronig; R. A. Harrison; S. R. Crothers; J. G. Luhmann; A. B. Galvin; T. L. Zhang; W. Baumjohann; H. K. Biernat
One of the goals of the NASA Solar TErestrial RElations Observatory (STEREO) mission is to study the feasibility of forecasting the direction, arrival time, and internal structure of solar coronal mass ejections (CMEs) from a vantage point outside the Sun-Earth line. Through a case study, we discuss the arrival time calculation of interplanetary CMEs (ICMEs) in the ecliptic plane using data from STEREO/SECCHI at large elongations from the Sun in combination with different geometric assumptions about the ICME front shape [fixed-Φ (FP): a point and harmonic mean (HM): a circle]. These forecasting techniques use single-spacecraft imaging data and are based on the assumption of constant velocity and direction. We show that for the slow (350 km s–1) ICME on 2009 February 13-18, observed at quadrature by the two STEREO spacecraft, the results for the arrival time given by the HM approximation are more accurate by 12 hr than those for FP in comparison to in situ observations of solar wind plasma and magnetic field parameters by STEREO/IMPACT/PLASTIC, and by 6 hr for the arrival time at Venus Express (MAG). We propose that the improvement is directly related to the ICME front shape being more accurately described by HM for an ICME with a low inclination of its symmetry axis to the ecliptic. In this case, the ICME has to be tracked to >30° elongation to obtain arrival time errors < ± 5 hr. A newly derived formula for calculating arrival times with the HM method is also useful for a triangulation technique assuming the same geometry.
The Astrophysical Journal | 2014
Tanja Rollett; C. Möstl; Manuela Temmer; R. A. Frahm; J. A. Davies; Astrid M. Veronig; Bojan Vršnak; U. V. Amerstorfer; C. J. Farrugia; Tomislav Žic; T. L. Zhang
We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CMEs propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ~2700 km/s at 15 R_sun to ~1500 km/s at 154 R_sun), the Earth-directed part showed an abrupt retardation below 35 R_sun (from ~1700 to ~900 km/s). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.
The Astrophysical Journal | 2016
Tanja Rollett; C. Möstl; Alexey Isavnin; J. A. Davies; Manuel Kubicka; Ute V. Amerstorfer; Richard A. Harrison
In this study, we present a new method for forecasting arrival times and speeds of coronal mass ejections (CMEs) at any location in the inner heliosphere. This new approach enables the adoption of a highly flexible geometrical shape for the CME front with an adjustable CME angular width and an adjustable radius of curvature of its leading edge, i.e. the assumed geometry is elliptical. Using, as input, STEREO heliospheric imager (HI) observations, a new elliptic conversion (ElCon) method is introduced and combined with the use of drag-based model (DBM) fitting to quantify the deceleration or acceleration experienced by CMEs during propagation. The result is then used as input for the Ellipse Evolution Model (ElEvo). Together, ElCon, DBM fitting, and ElEvo form the novel ElEvoHI forecasting utility. To demonstrate the applicability of ElEvoHI, we forecast the arrival times and speeds of 21 CMEs remotely observed from STEREO/HI and compare them to in situ arrival times and speeds at 1 AU. Compared to the commonly used STEREO/HI fitting techniques (Fixed-