Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tara G. Martin is active.

Publication


Featured researches published by Tara G. Martin.


Ecology Letters | 2013

Predicting species distributions for conservation decisions.

Antoine Guisan; Reid Tingley; John B. Baumgartner; Ilona Naujokaitis-Lewis; Patricia R. Sutcliffe; Ayesha I. T. Tulloch; Tracey J. Regan; Lluís Brotons; Eve McDonald-Madden; Chrystal S. Mantyka-Pringle; Tara G. Martin; Jonathan R. Rhodes; Ramona Maggini; Samantha A. Setterfield; Jane Elith; Mark W. Schwartz; Brendan A. Wintle; Olivier Broennimann; M. P. Austin; Simon Ferrier; Michael R. Kearney; Hugh P. Possingham; Yvonne M. Buckley

Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of ‘translators’ between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.


Conservation Biology | 2012

Eliciting Expert Knowledge in Conservation Science

Tara G. Martin; Mark A. Burgman; Fiona Fidler; Petra M. Kuhnert; Samantha Low-Choy; Marissa F. McBride; Kerrie Mengersen

Expert knowledge is used widely in the science and practice of conservation because of the complexity of problems, relative lack of data, and the imminent nature of many conservation decisions. Expert knowledge is substantive information on a particular topic that is not widely known by others. An expert is someone who holds this knowledge and who is often deferred to in its interpretation. We refer to predictions by experts of what may happen in a particular context as expert judgments. In general, an expert-elicitation approach consists of five steps: deciding how information will be used, determining what to elicit, designing the elicitation process, performing the elicitation, and translating the elicited information into quantitative statements that can be used in a model or directly to make decisions. This last step is known as encoding. Some of the considerations in eliciting expert knowledge include determining how to work with multiple experts and how to combine multiple judgments, minimizing bias in the elicited information, and verifying the accuracy of expert information. We highlight structured elicitation techniques that, if adopted, will improve the accuracy and information content of expert judgment and ensure uncertainty is captured accurately. We suggest four aspects of an expert elicitation exercise be examined to determine its comprehensiveness and effectiveness: study design and context, elicitation design, elicitation method, and elicitation output. Just as the reliability of empirical data depends on the rigor with which it was acquired so too does that of expert knowledge.


PLOS ONE | 2007

Optimal conservation of migratory species.

Tara G. Martin; Iadine Chadès; Peter Arcese; Peter P. Marra; Hugh P. Possingham; D. Ryan Norris

Background Migratory animals comprise a significant portion of biodiversity worldwide with annual investment for their conservation exceeding several billion dollars. Designing effective conservation plans presents enormous challenges. Migratory species are influenced by multiple events across land and sea–regions that are often separated by thousands of kilometres and span international borders. To date, conservation strategies for migratory species fail to take into account how migratory animals are spatially connected between different periods of the annual cycle (i.e. migratory connectivity) bringing into question the utility and efficiency of current conservation efforts. Methodology/Principal Findings Here, we report the first framework for determining an optimal conservation strategy for a migratory species. Employing a decision theoretic approach using dynamic optimization, we address the problem of how to allocate resources for habitat conservation for a Neotropical-Nearctic migratory bird, the American redstart Setophaga ruticilla, whose winter habitat is under threat. Our first conservation strategy used the acquisition of winter habitat based on land cost, relative bird density, and the rate of habitat loss to maximize the abundance of birds on the wintering grounds. Our second strategy maximized bird abundance across the entire range of the species by adding the constraint of maintaining a minimum percentage of birds within each breeding region in North America using information on migratory connectivity as estimated from stable-hydrogen isotopes in feathers. We show that failure to take into account migratory connectivity may doom some regional populations to extinction, whereas including information on migratory connectivity results in the protection of the species across its entire range. Conclusions/Significance We demonstrate that conservation strategies for migratory animals depend critically upon two factors: knowledge of migratory connectivity and the correct statement of the conservation problem. Our framework can be used to identify efficient conservation strategies for migratory taxa worldwide, including insects, birds, mammals, and marine organisms.


Ecological Applications | 2005

The power of expert opinion in ecological models using Bayesian methods: impact of grazing on birds

Tara G. Martin; Petra M. Kuhnert; Kerrie Mengersen; Hugh P. Possingham

One of our greatest challenges as researchers is predicting impacts of land use on biota, and predicting the impact of livestock grazing on birds is no exception. Insufficient data and poor survey design often yield results that are not statistically sig- nificant or that are difficult to interpret because researchers cannot disentangle the effects of grazing from other disturbances. This has resulted in few publications on the impact of grazing on birds alone. Ecologists with extensive experience in bird ecology in grazed landscapes could inform an analysis when time and monetary constraints limit the amount of data that can be collected. Using responses from 20 well-recognized ecologists throughout Australia, we captured this expert knowledge and incorporated it into a statistical model using Bayesian methods. Although relatively new to ecology, Bayesian methods allow straightforward probability statements to be made about specific models or scenarios and the integration of different types of information, including scientific judgment, while formally accom- modating and incorporating the uncertainty in the information provided. Data on bird density were collected across three broad levels of grazing (no/low, mod- erate, and high) typical of subtropical Australia. These field data were used in conjunction with expert data to produce estimates of species persistence under grazing. The addition of expert data through priors in our model strengthened results under at least one grazing level for all but one bird species examined. When experts were in agreement credible intervals were tightened substantially, whereas, when experts were in disagreement, results were similar to those evaluated in the absence of expert information. In fields where there is extensive expert knowledge, yet little published data, the use of expert information as priors for ecological models is a cost-effective way of making more confident predictions about the effect of management on biodiversity.


Trends in Ecology and Evolution | 2010

Monitoring does not always count.

Eve McDonald-Madden; P. W. J. Baxter; Richard A. Fuller; Tara G. Martin; Edward T. Game; Jensen Montambault; Hugh P. Possingham

The gross under-resourcing of conservation endeavours has placed an increasing emphasis on spending accountability. Increased accountability has led to monitoring forming a central element of conservation programs. Although there is little doubt that information obtained from monitoring can improve management of biodiversity, the cost (in time and/or money) of gaining this knowledge is rarely considered when making decisions about allocation of resources to monitoring. We present a simple framework allowing managers and policy advisors to make decisions about when to invest in monitoring to improve management.


Frontiers in Ecology and the Environment | 2014

Conserving mobile species

Claire A. Runge; Tara G. Martin; Hugh P. Possingham; Stephen G. Willis; Richard A. Fuller

The distributions of many species are dynamic in space and time, and movements made by individuals range from regular and predictable migrations to erratic, resource-driven nomadism. Conserving such mobile species is challenging; the effectiveness of a conservation action taken at one site depends on the condition of other sites that may be geographically and politically distant (thousands of kilometers away or in another jurisdiction, for example). Recent work has shown that even simple and predictable linkages among sites caused by “to-and-fro” migration can make migratory species especially vulnerable to habitat loss, and substantially affect the results of conservation prioritizations. Species characterized by more erratic or nomadic movements are very difficult to protect through current conservation planning techniques, which typically view species distributions as static. However, collaborations between migration ecologists, conservation planners, and mathematical ecologists are paving the way for improvements in conservation planning for mobile species.


Science | 2016

The broad footprint of climate change from genes to biomes to people

Brett R. Scheffers; Luc De Meester; Tom C. L. Bridge; Ary A. Hoffmann; John M. Pandolfi; Richard T. Corlett; Stuart H. M. Butchart; Paul Pearce-Kelly; Kit M. Kovacs; David Dudgeon; Michela Pacifici; Carlo Rondinini; Wendy B. Foden; Tara G. Martin; Camilo Mora; David Bickford; James E. M. Watson

Accumulating impacts Anthropogenic climate change is now in full swing, our global average temperature already having increased by 1°C from preindustrial levels. Many studies have documented individual impacts of the changing climate that are particular to species or regions, but individual impacts are accumulating and being amplified more broadly. Scheffers et al. review the set of impacts that have been observed across genes, species, and ecosystems to reveal a world already undergoing substantial change. Understanding the causes, consequences, and potential mitigation of these changes will be essential as we move forward into a warming world. Science, this issue p. 10.1126/science.aaf7671 BACKGROUND Climate change impacts have now been documented across every ecosystem on Earth, despite an average warming of only ~1°C so far. Here, we describe the full range and scale of climate change effects on global biodiversity that have been observed in natural systems. To do this, we identify a set of core ecological processes (32 in terrestrial and 31 each in marine and freshwater ecosystems) that underpin ecosystem functioning and support services to people. Of the 94 processes considered, 82% show evidence of impact from climate change in the peer-reviewed literature. Examples of observed impacts from meta-analyses and case studies go beyond well-established shifts in species ranges and changes to phenology and population dynamics to include disruptions that scale from the gene to the ecosystem. ADVANCES Species are undergoing evolutionary adaptation to temperature extremes, and climate change has substantial impacts on species physiology that include changes in tolerances to high temperatures, shifts in sex ratios in species with temperature-dependent sex determination, and increased metabolic costs of living in a warmer world. These physiological adjustments have observable impacts on morphology, with many species in both aquatic and terrestrial systems shrinking in body size because large surface-to-volume ratios are generally favored under warmer conditions. Other morphological changes include reductions in melanism to improve thermoregulation, and altered wing and bill length in birds. Broader-scale responses to climate change include changes in the phenology, abundance, and distribution of species. Temperate plants are budding and flowering earlier in spring and later in autumn. Comparable adjustments have been observed in marine and freshwater fish spawning events and in the timing of seasonal migrations of animals worldwide. Changes in the abundance and age structure of populations have also been observed, with widespread evidence of range expansion in warm-adapted species and range contraction in cold-adapted species. As a by-product of species redistributions, novel community interactions have emerged. Tropical and boreal species are increasingly incorporated into temperate and polar communities, respectively, and when possible, lowland species are increasingly assimilating into mountain communities. Multiplicative impacts from gene to community levels scale up to produce ecological regime shifts, in which one ecosystem state shifts to an alternative state. OUTLOOK The many observed impacts of climate change at different levels of biological organization point toward an increasingly unpredictable future for humans. Reduced genetic diversity in crops, inconsistent crop yields, decreased productivity in fisheries from reduced body size, and decreased fruit yields from fewer winter chill events threaten food security. Changes in the distribution of disease vectors alongside the emergence of novel pathogens and pests are a direct threat to human health as well as to crops, timber, and livestock resources. Humanity depends on intact, functioning ecosystems for a range of goods and services. Enhanced understanding of the observed impacts of climate change on core ecological processes is an essential first step to adapting to them and mitigating their influence on biodiversity and ecosystem service provision. Climate change impacts on ecological processes in marine, freshwater, and terrestrial ecosystems. Impacts can be measured on multiple processes at different levels of biological organization within ecosystems. In total, 82% of 94 ecological processes show evidence of being affected by climate change. Within levels of organization, the percentage of processes impacted varies from 60% for genetics to 100% for species distribution. Most ecological processes now show responses to anthropogenic climate change. In terrestrial, freshwater, and marine ecosystems, species are changing genetically, physiologically, morphologically, and phenologically and are shifting their distributions, which affects food webs and results in new interactions. Disruptions scale from the gene to the ecosystem and have documented consequences for people, including unpredictable fisheries and crop yields, loss of genetic diversity in wild crop varieties, and increasing impacts of pests and diseases. In addition to the more easily observed changes, such as shifts in flowering phenology, we argue that many hidden dynamics, such as genetic changes, are also taking place. Understanding shifts in ecological processes can guide human adaptation strategies. In addition to reducing greenhouse gases, climate action and policy must therefore focus equally on strategies that safeguard biodiversity and ecosystems.


Proceedings of the National Academy of Sciences of the United States of America | 2011

General rules for managing and surveying networks of pests, diseases, and endangered species

Iadine Chadès; Tara G. Martin; Sam Nicol; Mark A. Burgman; Hugh P. Possingham; Yvonne M. Buckley

The efficient management of diseases, pests, or endangered species is an important global issue faced by agencies constrained by limited resources. The management challenge is even greater when organisms are difficult to detect. We show how to prioritize management and survey effort across time and space for networks of susceptible–infected–susceptible subpopulations. We present simple and robust rules of thumb for protecting desirable, or eradicating undesirable, subpopulations connected in typical network patterns (motifs). We further demonstrate that these rules can be generalized to larger networks when motifs are combined in more complex formations. Results show that the best location to manage or survey a pest or a disease on a network is also the best location to protect or survey an endangered species. The optimal starting point in a network is the fastest motif to manage, where line, star, island, and cluster motifs range from fast to slow. Managing the most connected node at the right time and maintaining the same management direction provide advantages over previously recommended outside–in strategies. When a species or disease is not detected and our belief in persistence decreases, our results recommend shifting resources toward management or surveillance of the most connected nodes. Our analytic approximation provides guidance on how long we should manage or survey networks for hard-to-detect organisms. Our rules take into account management success, dispersal, economic cost, and imperfect detection and offer managers a practical basis for managing networks relevant to many significant environmental, biosecurity, and human health issues.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America.

D. T. Tyler Flockhart; Leonard I. Wassenaar; Tara G. Martin; Keith A. Hobson; Michael B. Wunder; D. Ryan Norris

Insect migration may involve movements over multiple breeding generations at continental scales, resulting in formidable challenges to their conservation and management. Using distribution models generated from citizen scientist occurrence data and stable-carbon and -hydrogen isotope measurements, we tracked multi-generational colonization of the breeding grounds of monarch butterflies (Danaus plexippus) in eastern North America. We found that monarch breeding occurrence was best modelled with geographical and climatic variables resulting in an annual breeding distribution of greater than 12 million km2 that encompassed 99% occurrence probability. Combining occurrence models with stable isotope measurements to estimate natal origin, we show that butterflies which overwintered in Mexico came from a wide breeding distribution, including southern portions of the range. There was a clear northward progression of monarchs over successive generations from May until August when reproductive butterflies began to change direction and moved south. Fifth-generation individuals breeding in Texas in the late summer/autumn tended to originate from northern breeding areas rather than regions further south. Although the Midwest was the most productive area during the breeding season, monarchs that re-colonized the Midwest were produced largely in Texas, suggesting that conserving breeding habitat in the Midwest alone is insufficient to ensure long-term persistence of the monarch butterfly population in eastern North America.


Journal of Applied Ecology | 2014

Understanding and predicting the combined effects of climate change and land‐use change on freshwater macroinvertebrates and fish

Chrystal S. Mantyka-Pringle; Tara G. Martin; David B. Moffatt; Simon Linke; Jonathan R. Rhodes

Climate change and land-use change are having substantial impacts on biodiversity world-wide, but few studies have considered the impact of these factors together. If the combined effects of climate and land-use change are greater than the effects of each threat individually, current conservation management strategies may be inefficient and/or ineffective. This is particularly important with respect to freshwater ecosystems because freshwater biodiversity has declined faster than either terrestrial or marine biodiversity over the last three decades. This is the first study to model the independent and combined effects of climate change and land-use change on freshwater macroinvertebrates and fish. Using a case study in south-east Queensland, Australia, we built a Bayesian belief network populated with a combination of field data, simulations, existing models and expert judgment. Different land-use and climate scenarios were used to make predictions on how the richness of freshwater macroinvertebrates and fish is likely to respond in future. We discovered little change in richness averaged across the region, but identified important impacts and effects at finer scales. High nutrients and high runoff as a result of urbanization combined with high nutrients and high water temperature as a result of climate change and were the leading drivers of potential declines in macroinvertebrates and fish at fine scales. Synthesis and applications. This is the first study to separate out the constituent drivers of impacts on biodiversity that result from climate change and land-use change. Mitigation requires management actions that reduce in-stream nutrients, slows terrestrial runoff and provides shade, to improve the resilience of biodiversity in streams. Encouragingly, the restoration of riparian habitats is identified as an important buffering tool that can mitigate the negative effects of climate change and land-use change.

Collaboration


Dive into the Tara G. Martin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josie Carwardine

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Iadine Chadès

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Firn

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sam Nicol

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Belinda Walters

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sue McIntyre

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge