Tarjinder Singh
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tarjinder Singh.
Nature Neuroscience | 2016
Tarjinder Singh; Mitja I. Kurki; David Curtis; Shaun Purcell; Lucy Crooks; Jeremy McRae; Jaana Suvisaari; Himanshu Chheda; Douglas Blackwood; Gerome Breen; Olli Pietiläinen; Sebastian S. Gerety; Muhammad Ayub; Moira Blyth; Trevor Cole; David A. Collier; Eve L. Coomber; Nicholas John Craddock; Mark J. Daly; John Danesh; Marta DiForti; Alison Foster; Nelson B. Freimer; Daniel H. Geschwind; Mandy Johnstone; Shelagh Joss; G. Kirov; Jarmo Körkkö; Outi Kuismin; Peter Holmans
By analyzing the whole-exome sequences of 4,264 schizophrenia cases, 9,343 controls and 1,077 trios, we identified a genome-wide significant association between rare loss-of-function (LoF) variants in SETD1A and risk for schizophrenia (P = 3.3 × 10−9). We found only two heterozygous LoF variants in 45,376 exomes from individuals without a neuropsychiatric diagnosis, indicating that SETD1A is substantially depleted of LoF variants in the general population. Seven of the ten individuals with schizophrenia carrying SETD1A LoF variants also had learning difficulties. We further identified four SETD1A LoF carriers among 4,281 children with severe developmental disorders and two more carriers in an independent sample of 5,720 Finnish exomes, both with notable neuropsychiatric phenotypes. Together, our observations indicate that LoF variants in SETD1A cause a range of neurodevelopmental disorders, including schizophrenia. Combining these data with previous common variant evidence, we suggest that epigenetic dysregulation, specifically in the histone H3K4 methylation pathway, is an important mechanism in the pathogenesis of schizophrenia.
PLOS ONE | 2014
Siana Nkya Mtatiro; Tarjinder Singh; Helen Rooks; Josephine Mgaya; Harvest Mariki; Deogratius Soka; Bruno Mmbando; Evarist Msaki; Iris C. R. M. Kolder; Swee Lay Thein; Stephan Menzel; Sharon E. Cox; Julie Makani; Jeffrey C. Barrett
Background Fetal hemoglobin (HbF) is an important modulator of sickle cell disease (SCD). HbF has previously been shown to be affected by variants at three loci on chromosomes 2, 6 and 11, but it is likely that additional loci remain to be discovered. Methods and Findings We conducted a genome-wide association study (GWAS) in 1,213 SCA (HbSS/HbSβ0) patients in Tanzania. Genotyping was done with Illumina Omni2.5 array and imputation using 1000 Genomes Phase I release data. Association with HbF was analysed using a linear mixed model to control for complex population structure within our study. We successfully replicated known associations for HbF near BCL11A and the HBS1L-MYB intergenic polymorphisms (HMIP), including multiple independent effects near BCL11A, consistent with previous reports. We observed eight additional associations with P<10−6. These associations could not be replicated in a SCA population in the UK. Conclusions This is the largest GWAS study in SCA in Africa. We have confirmed known associations and identified new genetic associations with HbF that require further replication in SCA populations in Africa.
Nature Genetics | 2017
Tarjinder Singh; James Tynan Rhys Walters; Mandy Johnstone; David Curtis; Jaana Suvisaari; Minna Torniainen; Elliott Rees; Conrad Iyegbe; Douglas Blackwood; Andrew M. McIntosh; G. Kirov; Daniel H. Geschwind; Robin M. Murray; Marta Di Forti; Elvira Bramon; Michael J. Gandal; Christina M. Hultman; Pamela Sklar; Aarno Palotie; Patrick F. Sullivan; Michael Conlon O'Donovan; Michael John Owen; Jeffrey C. Barrett
By performing a meta-analysis of rare coding variants in whole-exome sequences from 4,133 schizophrenia cases and 9,274 controls, de novo mutations in 1,077 family trios, and copy number variants from 6,882 cases and 11,255 controls, we show that individuals with schizophrenia carry a significant burden of rare, damaging variants in 3,488 genes previously identified as having a near-complete depletion of loss-of-function variants. In patients with schizophrenia who also have intellectual disability, this burden is concentrated in risk genes associated with neurodevelopmental disorders. After excluding known risk genes for neurodevelopmental disorders, a significant rare variant burden persists in other genes intolerant of loss-of-function variants; although this effect is notably stronger in patients with both schizophrenia and intellectual disability, it is also seen in patients with schizophrenia who do not have intellectual disability. Together, our results show that rare, damaging variants contribute to the risk of schizophrenia both with and without intellectual disability and support an overlap of genetic risk between schizophrenia and other neurodevelopmental disorders.
Inflammatory Bowel Diseases | 2015
Tarjinder Singh; Adam P. Levine; Philip J. Smith; Andrew M. Smith; Anthony W. Segal; Jeffrey C. Barrett
Background:Many genetic risk loci have been identified for inflammatory bowel disease and colorectal cancer; however, identifying the causal genes for each association signal remains a challenge. Expression quantitative trait loci (eQTL) studies have identified common variants that induce differential gene expression and eQTLs can be cross-referenced with disease association signals for gene prioritization. However, the genetics of gene expression are highly tissue-specific, and further eQTL datasets from primary tissues are needed. Methods:We have conducted an eQTL discovery study using tissue extracted endoscopically from the terminal ileum and 4 colonic locations of non-inflamed bowel from 65 controls and patients with quiescent inflammatory bowel disease. A genome-wide cis-eQTL analysis was performed on >3,600,000 variants and 13,558 expressed probes. Results:We identified 1312 independent eQTLs associated with the differential expression of 1222 genes in rectal mucosa. One hundred seventy-one, 211, 168, and 102 independent eQTLs were identified in the sigmoid, descending colon, ascending colon, and terminal ileum, respectively. Twenty-six percent of genes with rectal eQTLs were novel and unique compared with 7 published eQTL datasets. Rectal eQTLs were significantly enriched for genes expressed in the colon. Examining 163 inflammatory bowel disease risk loci identified 11 tag single-nucleotide polymorphisms that were rectal eQTLs. A colorectal cancer locus at 11q23 contained a rectal eQTL for COLCA2, a protein implicated in colon cancer pathogenesis. Conclusions:This study defines a catalog of ileal and colonic eQTLs. Our data reaffirm the tissue specificity of eQTLs and support the notion that identification of functional variants in relevant tissue can be effective in fine-mapping genetic risk loci.
BMC Medical Genetics | 2015
Siana Nkya Mtatiro; Josephine Mgaya; Tarjinder Singh; Harvest Mariki; Helen Rooks; Deogratius Soka; Bruno Mmbando; Swee Lay Thein; Jeffrey C. Barrett; Julie Makani; Sharon E. Cox; Stephan Menzel
BackgroundCommon genetic variants residing near upstream regulatory elements for MYB, the gene encoding transcription factor cMYB, promote the persistence of fetal hemoglobin (HbF) into adulthood. While they have no consequences in healthy individuals, high HbF levels have major clinical benefits in patients with sickle cell disease (SCD) or β thalassemia. Here, we present our detailed investigation of HBS1L-MYB intergenic polymorphism block 2 (HMIP-2), the central component of the complex quantitative-trait locus upstream of MYB, in 1,022 individuals with SCD in Tanzania.MethodsWe have looked at 1022 individuals with HbSS or HbS/β0 in Tanzania. In order to achieve a detailed analysis of HMIP-2, we performed targeted genotyping for a total of 10 SNPs and extracted additional 528 SNPs information from a genome wide scan involving the same population. Using MACH, we utilized the existing YRI data from 1000 genomes to impute 54 SNPs situated within HIMP-2.ResultsSeven HbF-increasing, low-frequency variants (β > 0.3, p < 10−5, f ≤ 0.05) were located in two partially-independent sub-loci, HMIP-2A and HMIP-2B. The spectrum of haplotypes carrying such alleles was diverse when compared to European and West African reference populations: we detected one such haplotype at sub-locus HMIP-2A, two at HMIP-2B, and a fourth including high-HbF alleles at both sub-loci (‘Eurasian’ haplotype clade). In the region of HMIP-2A a putative functional variant (a 3-bp indel) has been described previously, but no such candidate causative variant exists at HMIP-2B. Extending our dataset through imputation with 1000 Genomes, whole-genome-sequence data, we have mapped peak association at HMIP-2B to an 11-kb region around rs9494145 and rs9483788, flanked by two conserved regulatory elements for MYB.ConclusionsStudies in populations from the African continent provide distinct opportunities for mapping disease-modifying genetic loci, especially for conditions that are highly prevalent there, such as SCD. Population-genetic characteristics of our cohort, such as ethnic diversity and the predominance of shorter, African-type haplotypes, can add to the power of such studies.
bioRxiv | 2016
Tarjinder Singh; James Tynan Rhys Walters; Mandy Johnstone; David Curtis; Jaana Suvisaari; Minna Torniainen; Elliott Rees; Conrad Iyegbe; Douglas Blackwood; Andrew M. McIntosh; G. Kirov; Daniel H. Geschwind; Robin M. Murray; Marta Di Forti; Elvira Bramon; Interval Study; Aarno Palotie; Michael Conlon O'Donovan; Michael John Owen; Jeffrey C. Barrett
By meta-analyzing rare coding variants in whole-exome sequences of 4,264 schizophrenia cases and 9,343 controls, de novo mutations in 1,077 trios, and array-based copy number variant calls from 6,882 cases and 11,255 controls, we show that individuals with schizophrenia carry a significant burden of rare damaging variants in a subset of 3,230 “highly constrained” genes previously identified as having near-complete depletion of protein truncating variants. Furthermore, rare variant enrichment analyses demonstrate that this burden is concentrated in known autism spectrum disorder risk genes, genes diagnostic of severe developmental disorders, and the autism-implicated sets of promoter targets of CHD8, and mRNA targets of FMRP. We further show that schizophrenia patients with intellectual disability have a greater enrichment of rare damaging variants in highly constrained genes and developmental disorder genes, but that a weaker but significant enrichment exists throughout the larger schizophrenia population. Combined, our results demonstrate that schizophrenia risk loci of large effect across a range of variant types implicate a common set of genes shared with broader neurodevelopmental disorders, suggesting a path forward in identifying additional risk genes in psychiatric disorders and further supporting a neurodevelopmental etiology to the pathogenesis of schizophrenia.
Journal of the National Cancer Institute | 2017
Mykyta Artomov; Alexander J. Stratigos; Ivana K. Kim; Raj Kumar; Martin Lauss; Bobby Y. Reddy; Benchun Miao; Carla Daniela Robles-Espinoza; Aravind Sankar; Ching-Ni Njauw; Kristen Shannon; Evangelos S. Gragoudas; Anne Marie Lane; Vivek Iyer; Julia Newton-Bishop; D. Timothy Bishop; Elizabeth A. Holland; Graham J. Mann; Tarjinder Singh; Jeffrey C. Barrett; David J. Adams; Göran Jönsson; Mark J. Daly; Hensin Tsao
Background Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Methods Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by large-scale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Four models were used to estimate the association among different types of variants. In vitro functional validation was performed using three human melanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of human melanoma A375 melanoma cells in nude mice (eight mice per group). All statistical tests were two-sided. Results Strong signals were detected for CDKN2A (Pmin = 6.16 × 10-8) in the CM cohort (n = 273) and BAP1 (Pmin = 3.83 × 10-6) in the OM (n = 99) cohort. Eleven genes that exhibited borderline association (P < 10-4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75 × 10-4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37 × 10-5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. Conclusions The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and implicate EBF3 as a possible CM predisposition gene.
Nature | 2014
Silvia De Rubeis; Xin He; Arthur P. Goldberg; Christopher S. Poultney; Kaitlin E. Samocha; A. Ercument Cicek; Yan Kou; Li Liu; Menachem Fromer; Susan Walker; Tarjinder Singh; Lambertus Klei; Jack A. Kosmicki; Shih Chen Fu; Branko Aleksic; Monica Biscaldi; Patrick Bolton; Jessica M. Brownfeld; Jinlu Cai; Nicholas G. Campbell; Angel Carracedo; Maria H. Chahrour; Andreas G. Chiocchetti; Hilary Coon; Emily L. Crawford; Lucy Crooks; Sarah Curran; Geraldine Dawson; Eftichia Duketis; Bridget A. Fernandez
Nature Genetics | 2016
Alejandro Sifrim; Marc-Phillip Hitz; Anna Wilsdon; Jeroen Breckpot; Saeed Al Turki; Bernard Thienpont; Jeremy McRae; Tomas Fitzgerald; Tarjinder Singh; G. J. Swaminathan; Elena Prigmore; Diana Rajan; Hashim Abdul-Khaliq; Siddharth Banka; Ulrike M M Bauer; Jamie Bentham; Felix Berger; Shoumo Bhattacharya; Frances Bu'Lock; Natalie Canham; Irina-Gabriela Colgiu; Catherine Cosgrove; Helen Cox; Ingo Daehnert; Allan Daly; John Danesh; Alan Fryer; Marc Gewillig; Emma Hobson; Kirstin Hoff