Tatjana Vavilkin
Stony Brook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatjana Vavilkin.
The Astrophysical Journal | 2011
Andreea Oana Petric; Lee Armus; Justin Howell; Ben Hiu Pan Chan; Joseph M. Mazzarella; A. S. Evans; Jason A. Surace; David B. Sanders; P. N. Appleton; V. Charmandaris; T. Díaz-Santos; D. T. Frayer; S. Haan; Hanae Inami; Kazushi Iwasawa; D. C. Kim; Barry F. Madore; J. Marshall; H. W. W. Spoon; Sabrina Stierwalt; E. Sturm; Tatjana Vavilkin; Sylvain Veilleux
We present a statistical analysis of 248 luminous infrared galaxies (LIRGs) which comprise the Great Observatories All-sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on-board Spitzer in the rest-frame wavelength range between 5 and 38 µm. The GOALS sample enables a direct measurement of the relative contributions of star-formation and active galactic nuclei (AGN) to the total infrared (IR) emission from a large, statistically complete sample of LIRGs in the local Universe.Several diagnostics effective at isolating the AGN contribution to the Mid-infrared (MIR) emission using [NeV], [OIV] and [NeII] gas emission lines, the 6.2 µm PAH equivalent width (EQW) and the shape of the MIR continuum are compared. The [NeV] line which indicates the presence of an AGN is detected in 22% of all LIRGs. The 6.2 µm PAH EQW, [NeV]/L_(IR), [NeV]/[NeII] and [OIV]/[NeII] ratios, and the ratios of 6.2 µm PAH flux to the integrated continuum flux between 5.3 and 5.8 µm suggest values of around 10% for the fractional AGN contribution to the total IR luminosity of LIRGs. The median of these estimates suggests that for local LIRGs the fractional AGN contribution to the total IR luminosity is ~12%. AGN dominated LIRGs have higher global and nuclear IR luminosities, warmer MIR colors and are interacting more than starburst (SB) dominated LIRGs. However there are no obvious linear correlations between these properties, suggesting that none of these properties alone can determine the activity and evolution of an individual LIRG. A study of the IRAC colors of LIRGs confirms that methods of finding AGN on the basis of their MIR colors are effective at choosing AGN but 50% to 40% of AGN dominated LIRGs are not selected as such with these methods.
Astronomy and Astrophysics | 2011
Kazushi Iwasawa; D. B. Sanders; Stacy H. Teng; Lee Armus; A. S. Evans; Justin Howell; Stefanie Komossa; Joseph M. Mazzarella; Andreea Oana Petric; Jason A. Surace; Tatjana Vavilkin; Sylvain Veilleux; N. Trentham
We present X-ray data for a complete sample of 44 luminous infrared galaxies (LIRGs), obtained with the Chandra X-ray Observatory. These are the X-ray observations of the high luminosity portion of the Great Observatory All-sky LIRG Survey (GOALS), which includes the most luminous infrared selected galaxies, log (L_(ir)/L_⊙) ≥ 11.73, in the local universe, z ≤ 0.088. X-rays were detected from 43 out of 44 objects, and their arcsec-resolution images, spectra, and radial brightness distributions are presented. With a selection by hard X-ray colour and the 6.4 keV iron line, AGN are found in 37% of the objects, with higher luminosity sources more likely to contain an AGN. These AGN also tend to be found in late-stage mergers. The AGN fraction would increase to 48% if objects with [Ne v]λ14.3 μm detection are included. Double AGN are clearly detected only in NGC 6240 among 24 double/triple systems. Other AGN are found either in single nucleus objects or in one of the double nuclei at similar rates. Objects without conventional X-ray signatures of AGN appear to be hard X-ray quiet, relative to the X-ray to far-IR correlation for starburst galaxies, as discussed elsewhere. Most objects also show extended soft X-ray emission, which is likely related to an outflow from the nuclear region, with a metal abundance pattern suggesting enrichment by core collapse supernovae, as expected for a starburst.
Astrophysical Journal Supplement Series | 2012
Vivian U; David B. Sanders; Joseph M. Mazzarella; A. S. Evans; Justin Howell; Jason A. Surace; Lee Armus; Kazushi Iwasawa; D.-C. Kim; Caitlin M. Casey; Tatjana Vavilkin; Michele Dufault; Kirsten Larson; Joshua E. Barnes; Ben H. P. Chan; David T. Frayer; S. Haan; Hanae Inami; Cathy M. Ishida; J. Kartaltepe; J. Melbourne; Andreea Oana Petric
Luminous (LIRGs; log (L IR/L ☉) = 11.00-11.99) and ultraluminous infrared galaxies (ULIRGs; log (L_(IR)/L_☉) = 12.00-12.99) are the most extreme star-forming galaxies in the universe. The local (U)LIRGs provide a unique opportunity to study their multi-wavelength properties in detail for comparison with their more numerous counterparts at high redshifts. We present common large aperture photometry at radio through X-ray wavelengths and spectral energy distributions (SEDs) for a sample of 53 nearby (z 5.24 Jy) Great Observatories All-sky LIRG Survey. The SEDs for all objects are similar in that they show a broad, thermal stellar peak (~0.3-2 μm), and a dominant FIR (~40-200 μm) thermal dust peak, where νL_ν(60 μm)/νL_ν(V) increases from ~2 to 30 with increasing L_(IR). When normalized at IRAS 60 μm, the largest range in the luminosity ratio, R(λ) ≡ log[νL_ν(λ)/νL_ν(60 μm)], observed over the full sample is seen in the hard X-rays (HX = 2-10 keV), where ΔR_(HX) = 3.73 (R_(HX) = -3.10). A small range is found in the radio (1.4 GHz), ΔR_(1.4 GHz) = 1.75, where the mean ratio is largest, (R__(1.4GHz) = -5.81). Total infrared luminosities, L_(IR)(8-1000 μm), dust temperatures, and dust masses were computed from fitting thermal dust emission modified blackbodies to the mid-infrared (MIR) through submillimeter SEDs. The new results reflect an overall ~0.02 dex lower luminosity than the original IRAS values. Total stellar masses were computed by fitting stellar population synthesis models to the observed near-infrared (NIR) through ultraviolet (UV) SEDs. Mean stellar masses are found to be log (M_★/M_☉) = 10.79 ± 0.40. Star formation rates have been determined from the infrared (SFR_(IR) ~ 45 M_☉ yr^(–1)) and from the monochromatic UV luminosities (SFR_(UV) ~ 1.3 M_☉ yr^(–1)), respectively. Multi-wavelength active galactic nucleus (AGN) indicators have be used to select putative AGNs: About 60% of the ULIRGs would have been classified as an AGN by at least one of the selection criteria.
The Astronomical Journal | 2011
S. Haan; Jason A. Surace; Lee Armus; A. S. Evans; Justin Howell; Joseph M. Mazzarella; D. C. Kim; Tatjana Vavilkin; Hanae Inami; D. B. Sanders; Andreea Oana Petric; C. Bridge; J. Melbourne; V. Charmandaris; T. Díaz-Santos; E. J. Murphy; Sabrina Stierwalt; J. Marshall
We present results of Hubble Space Telescope NICMOS H-band imaging of 73 of most luminous (i.e., log[L_IR/L_0]>11.4) Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). This dataset combines multi-wavelength imaging and spectroscopic data from space (Spitzer, HST, GALEX, and Chandra) and ground-based telescopes. In this paper we use the high-resolution near-infrared data to recover nuclear structure that is obscured by dust at optical wavelengths and measure the evolution in this structure along the merger sequence. A large fraction of all galaxies in our sample possess double nuclei (~63%) or show evidence for triple nuclei (~6%). Half of these double nuclei are not visible in the HST B-band images due to dust obscuration. The majority of interacting LIRGs have remaining merger timescales of 0.3 to 1.3 Gyrs, based on the projected nuclear separations and the mass ratio of nuclei. We find that the bulge luminosity surface density increases significantly along the merger sequence (primarily due to a decrease of the bulge radius), while the bulge luminosity shows a small increase towards late merger stages. No significant increase of the bulge Sersic index is found. LIRGs that show no interaction features have on average a significantly larger bulge luminosity, suggesting that non merging LIRGs have larger bulge masses than merging LIRGs. This may be related to the flux limited nature of the sample and the fact that mergers can significantly boost the IR luminosity of otherwise low luminosity galaxies. We find that the projected nuclear separation is significantly smaller for ULIRGs (median value of 1.2 kpc) than for LIRGs (mean value of 6.7 kpc), suggesting that the LIRG phase appears earlier in mergers than the ULIRG phase.
The Astronomical Journal | 2006
Aaron S. Evans; P. M. Solomon; L. J. Tacconi; Tatjana Vavilkin; D. Downes
New millimeter-wave CO and HCN observations of the host galaxies of infrared-excess Palomar-Green (PG) quasi-stellar objects (QSOs) previously detected in CO are presented. These observations are designed to assess the validity of using the infrared luminosity to estimate star formation rates of luminous active galactic nuclei (AGNs) by determining the relative significance of dust heating by young, massive stars and AGNs in QSO hosts and IRAS galaxies with warm, AGN-like infrared colors. The analysis of these data is based, in part, on evidence that HCN traces high-density (>104 cm-3) molecular gas, and that the starburst-to-HCN luminosity ratio, LSB/L, of IRAS-detected galaxies is constant. The new CO data provide a confirmation of prior claims that PG QSO hosts have high infrared-to-CO luminosity ratios, LIR/L, relative to IRAS galaxies of comparable LIR. Such high LIR/L ratios may be due to significant heating of dust by the QSO or to an increased star formation efficiency in QSO hosts relative to the bulk of the luminous IRAS galaxy population. The HCN data show a similar trend, with the PG QSO host I Zw 1 and most of the warm IRAS galaxies having high LIR/L (>1600) relative to the cool IRAS galaxy population, for which the median LIR/Lcool ~ 890. If the assumption is made that the infrared emission from cool IRAS galaxies is reprocessed light from embedded star-forming regions, then high values of LIR/L are likely the result of dust heating by the AGNs. Further, if the median ratio of L/L ~ 0.06 observed for Seyfert galaxies and I Zw 1 is applied to the PG QSOs not detected in HCN, then the derived LIR/L values correspond to a stellar contribution to the production of LIR of ~7%-39%, and star formation rates of ~2-37 M⊙ yr-1 are derived for the QSO hosts. The corresponding values for the warm galaxies are ~10%-100% and ~3-220 M⊙ yr-1. Alternatively, if the far-infrared is adopted as the star formation component of the total infrared in cool galaxies, i.e., LFIR/Lcool ~ LSB/L, the stellar contributions in QSO hosts and warm galaxies to their LFIR are up to 35% and 10% higher, respectively, than the percentages derived for LIR. This raises the possibility that the LFIR in several of the PG QSO hosts, including I Zw 1, could be due entirely to dust heated by young, massive stars. Finally, there is no evidence that the global HCN emission is enhanced relative to CO in galaxies hosting luminous AGNs.
The Astronomical Journal | 2010
Hanae Inami; Lee Armus; Jason A. Surace; Joseph M. Mazzarella; A. S. Evans; D. B. Sanders; Justin Howell; Andreea Oana Petric; Tatjana Vavilkin; Kazushi Iwasawa; S. Haan; E. J. Murphy; Sabrina Stierwalt; P. N. Appleton; Joshua E. Barnes; Gregory David Bothun; C. Bridge; Ben Hiu Pan Chan; V. Charmandaris; D. T. Frayer; Lisa J. Kewley; D. C. Kim; S. Lord; Barry F. Madore; J. Marshall; Hideo Matsuhara; J. E. Melbourne; Jeffrey A. Rich; B. Schulz; H. W. W. Spoon
An analysis of data from the Spitzer Space Telescope, Hubble Space Telescope, Chandra X-ray Observatory, and AKARI Infrared Astronomy Satellite is presented for the z = 0.036 merging galaxy system II Zw 096 (CGCG 448-020). Because II Zw 096 has an infrared luminosity of log(L_(IR)/L_☉) = 11.94, it is classified as a Luminous Infrared Galaxy (LIRG), and was observed as part of the Great Observatories All-sky LIRG Survey (GOALS). The Spitzer data suggest that 80% of the total infrared luminosity comes from an extremely compact, red source not associated with the nuclei of the merging galaxies. The Spitzer mid-infrared spectra indicate no high-ionization lines from a buried active galactic nucleus in this source. The strong detection of the 3.3 μm and 6.2 μm polycyclic aromatic hydrocarbon emission features in the AKARI and Spitzer spectra also implies that the energy source of II Zw 096 is a starburst. Based on Spitzer infrared imaging and AKARI near-infrared spectroscopy, the star formation rate is estimated to be 120 M_☉ yr^(-1) and >45 M_☉ yr^(-1), respectively. Finally, the high-resolution B-, I-, and H-band images show many star clusters in the interacting system. The colors of these clusters suggest at least two populations—one with an age of 1-5 Myr and one with an age of 20-500 Myr, reddened by 0-2 mag of visual extinction. The masses of these clusters span a range between 10^6 and 10^8 M_☉. This starburst source is reminiscent of the extranuclear starburst seen in NGC 4038/9 (the Antennae Galaxies) and Arp 299 but approximately an order of magnitude more luminous than the Antennae. The source is remarkable in that the off-nuclear infrared luminosity dominates the entire system.
Monthly Notices of the Royal Astronomical Society | 2013
S. Haan; Lee Armus; Jason A. Surace; V. Charmandaris; A. S. Evans; T. Díaz-Santos; J. Melbourne; Joseph M. Mazzarella; Justin Howell; S. Stierwalt; D. C. Kim; Tatjana Vavilkin; D. B. Sanders; Andreea Oana Petric; E. J. Murphy; R. Braun; C. Bridge; H. Inami
Nuclear stellar cusps are defined as central excess light component in the stellar light profiles of galaxies and are suggested to be stellar relics of intense compact starbursts in the central ∼100–500 pc region of gas-rich major mergers. Here, we probe the build-up of nuclear cusps during the actual starburst phase for a complete sample of luminous infrared galaxy (LIRG) systems (85 LIRGs, with 11.4 < log [LIR/L_⊙] < 12.5) in the Great Observatories All-sky LIRG Survey sample. Cusp properties are derived via 2D fitting of the nuclear stellar light imaged in the near-infrared (NIR) by the Hubble Space Telescope and have been combined with mid-infrared (IR) diagnostics for active galactic nucleus (AGN)/starburst characterization. We find that nuclear stellar cusps are resolved in 76 per cent of LIRGs (merger and non-interacting galaxies). The cusp strength and luminosity increase with far-IR luminosity (excluding AGN) and merger stage, confirming theoretical models that starburst activity is associated with the build-up of nuclear stellar cusps. Evidence for ultracompact nuclear starbursts is found in ∼13 per cent of LIRGs, which have a strong unresolved central NIR light component but no significant contribution of an AGN. The nuclear NIR surface density (measured within 1 kpc radius) increases by a factor of ∼5 towards late merger stages. A careful comparison to local early-type galaxies with comparable masses reveals (a) that local (U)LIRGs have a significantly larger cusp fraction and (b) that the majority of the cusp LIRGs have host galaxy luminosities (H band) similar to core ellipticals which are roughly one order in magnitude larger than those for cusp ellipticals.
The Astrophysical Journal | 2017
S. T. Linden; A. S. Evans; Jeffrey A. Rich; Kirsten Larson; Lee Armus; T. Díaz-Santos; G. C. Privon; Justin Howell; H. Inami; D.-C. Kim; L.-H. Chien; Tatjana Vavilkin; Joseph M. Mazzarella; F. Modica; Jason A. Surace; S. Manning; A. Abdullah; A. Blake; A. Yarber; T. Lamberts
We present the results of a Hubble Space Telescope ACS/HRC FUV, ACS/WFC optical study into the cluster populations of a sample of 22 Luminous Infrared Galaxies in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry, we have derived ages and masses for a total of 484 star clusters contained within these systems. This allows us to examine the properties of star clusters found in the extreme environments of LIRGs relative to lower luminosity star-forming galaxies in the local universe. We find that by adopting a Bruzual & Charlot simple stellar population model and Salpeter initial mass function, the age distribution of the clusters declines as dN/dτ = τ^(-0.9+/-0.3), consistent with the age distribution derived for the Antennae Galaxies, and interpreted as evidence for rapid cluster disruption occurring in the strong tidal fields of merging galaxies. The large number of 10^6 M_☉ young clusters identified in the sample also suggests that LIRGs are capable of producing more high-mass clusters than what is observed to date in any lower luminosity star-forming galaxy in the local universe. The observed cluster mass distribution of dN/dM = M^(-1.95+/-0.11) is consistent with the canonical −2 power law used to describe the underlying initial cluster mass function (ICMF) for a wide range of galactic environments. We interpret this as evidence against mass-dependent cluster disruption, which would flatten the observed CMF relative to the underlying ICMF distribution.
Astrophysical Journal Supplement Series | 2013
Sabrina Stierwalt; Lee Armus; Jason A. Surace; Hanae Inami; Andreea Oana Petric; T. Díaz-Santos; S. Haan; V. Charmandaris; Justin Howell; D. C. Kim; J. Marshall; Joseph M. Mazzarella; H. W. W. Spoon; Sylvain Veilleux; A. S. Evans; D. B. Sanders; P. N. Appleton; Gregory David Bothun; C. Bridge; Ben Hiu Pan Chan; D. T. Frayer; K. Iwasawa; Lisa J. Kewley; S. Lord; Barry F. Madore; J. E. Melbourne; E. J. Murphy; Jeffrey A. Rich; B. Schulz; E. Sturm
The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer IRS spectra covering 5-38 µm and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10^(11)≤ L_(IR)=L^☉ 60%) of the GOALS LIRGs have high 6.2 µm PAH equivalent widths (EQW_(6.2µm) > 0.4 µm) and low levels of silicate absorption (s_(9.7µm) > -1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L_(IR). U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas & dust is funneled towards the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases leading also to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW_(6.2µm) < 0.1 µm) consistent with their emission being dominated by an AGN in the MIR. These extremely low PAH equivalent width sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR emission, suggesting that the obscuring (cool) dust is associated with the outer regions of the starburst and not simply a measure of the dust along the line of sight through a large, dusty disk. A marked decline is seen for the fraction of high EQW (star formation dominated) sources as the merger progresses. The decline is accompanied by an increase in the fraction of composite sources while the fraction of sources where an AGN dominates the MIR emission remains low. When compared to the MIR spectra of submillimeter galaxies (SMGs) at z~2, both the average GOALS LIRG and ULIRG spectra are more absorbed at 9.7 µm and the average GOALS LIRG has more PAH emission. However, when the AGN contributions to both the local GOALS LIRGs and the high-z SMGs are removed, the average local starbursting LIRG closely resembles the starburst-dominated SMGs.
Astrophysical Journal Supplement Series | 2013
Sabrina Stierwalt; Lee Armus; Jason A. Surace; Hanae Inami; Andreea Oana Petric; T. Díaz-Santos; S. Haan; V. Charmandaris; Justin Howell; D.-C. Kim; J. Marshall; Joseph M. Mazzarella; H. W. W. Spoon; Sylvain Veilleux; A. S. Evans; D. B. Sanders; P. N. Appleton; Gregory David Bothun; C. Bridge; Ben Hiu Pan Chan; D. T. Frayer; Kazushi Iwasawa; Lisa J. Kewley; S. Lord; Barry F. Madore; J. E. Melbourne; E. J. Murphy; Jeffrey A. Rich; B. Schulz; E. Sturm
The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer IRS spectra covering 5-38 µm and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10^(11)≤ L_(IR)=L^☉ 60%) of the GOALS LIRGs have high 6.2 µm PAH equivalent widths (EQW_(6.2µm) > 0.4 µm) and low levels of silicate absorption (s_(9.7µm) > -1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L_(IR). U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas & dust is funneled towards the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases leading also to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW_(6.2µm) < 0.1 µm) consistent with their emission being dominated by an AGN in the MIR. These extremely low PAH equivalent width sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR emission, suggesting that the obscuring (cool) dust is associated with the outer regions of the starburst and not simply a measure of the dust along the line of sight through a large, dusty disk. A marked decline is seen for the fraction of high EQW (star formation dominated) sources as the merger progresses. The decline is accompanied by an increase in the fraction of composite sources while the fraction of sources where an AGN dominates the MIR emission remains low. When compared to the MIR spectra of submillimeter galaxies (SMGs) at z~2, both the average GOALS LIRG and ULIRG spectra are more absorbed at 9.7 µm and the average GOALS LIRG has more PAH emission. However, when the AGN contributions to both the local GOALS LIRGs and the high-z SMGs are removed, the average local starbursting LIRG closely resembles the starburst-dominated SMGs.