Teemu Kuulasmaa
University of Eastern Finland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teemu Kuulasmaa.
Diabetes | 2009
Alena Stančáková; Martin Javorský; Teemu Kuulasmaa; Steven M. Haffner; Johanna Kuusisto; Markku Laakso
OBJECTIVE We evaluated insulin sensitivity and insulin secretion across the entire range of fasting (FPG) and 2-h plasma glucose (PG), and we investigated the differences in insulin sensitivity and insulin release in different glucose tolerance categories. RESEARCH DESIGN AND METHODS A total of 6,414 Finnish men (aged 57 ± 7 years, BMI 27.0 ± 3.9 kg/m2) from our ongoing population-based METSIM (Metabolic Syndrome in Men) study were included. Of these subjects, 2,168 had normal glucose tolerance, 2,859 isolated impaired fasting glucose (IFG), 217 isolated impaired glucose tolerance (IGT), 701 a combination of IFG and IGT, and 469 newly diagnosed type 2 diabetes. RESULTS The Matsuda index of insulin sensitivity decreased substantially within the normal range of FPG (−17%) and 2-h PG (−37%) and was approximately −65 and −53% in the diabetic range of FPG and 2-h PG, respectively, compared with the reference range (FPG and 2-h PG <5.0 mmol/l). Early-phase insulin release declined by only approximately −5% within the normal range of FPG and 2-h PG but decreased significantly in the diabetic range of FPG (by 32–70%) and 2-h PG (by 33–51%). Changes in insulin sensitivity and insulin secretion in relation to hyperglycemia were independent of obesity. The predominant feature of isolated IGT was impaired peripheral insulin sensitivity. Isolated IFG was characterized by impaired early and total insulin release. CONCLUSIONS Peripheral insulin sensitivity was already decreased substantially at low PG levels within the normoglycemic range, whereas impairment in insulin secretion was observed mainly in the diabetic range of FPG and 2-h PG. Obesity did not affect changes in insulin sensitivity or insulin secretion in relation to hyperglycemia.
Diabetes | 2009
Alena Stančáková; Teemu Kuulasmaa; Jussi Paananen; Anne U. Jackson; Lori L. Bonnycastle; Francis S. Collins; Michael Boehnke; Johanna Kuusisto; Markku Laakso
OBJECTIVE We investigated the effects of 18 confirmed type 2 diabetes risk single nucleotide polymorphisms (SNPs) on insulin sensitivity, insulin secretion, and conversion of proinsulin to insulin. RESEARCH DESIGN AND METHODS A total of 5,327 nondiabetic men (age 58 ± 7 years, BMI 27.0 ± 3.8 kg/m2) from a large population-based cohort were included. Oral glucose tolerance tests and genotyping of SNPs in or near PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, LOC387761, CDKN2B, IGF2BP2, CDKAL1, HNF1B, WFS1, JAZF1, CDC123, TSPAN8, THADA, ADAMTS9, NOTCH2, KCNQ1, and MTNR1B were performed. HNF1B rs757210 was excluded because of failure to achieve Hardy-Weinberg equilibrium. RESULTS Six SNPs (TCF7L2, SLC30A8, HHEX, CDKN2B, CDKAL1, and MTNR1B) were significantly (P < 6.9 × 10−4) and two SNPs (KCNJ11 and IGF2BP2) were nominally (P < 0.05) associated with early-phase insulin release (InsAUC0–30/GluAUC0–30), adjusted for age, BMI, and insulin sensitivity (Matsuda ISI). Combined effects of these eight SNPs reached −32% reduction in InsAUC0–30/GluAUC0–30 in carriers of ≥11 vs. ≤3 weighted risk alleles. Four SNPs (SLC30A8, HHEX, CDKAL1, and TCF7L2) were significantly or nominally associated with indexes of proinsulin conversion. Three SNPs (KCNJ11, HHEX, and TSPAN8) were nominally associated with Matsuda ISI (adjusted for age and BMI). The effect of HHEX on Matsuda ISI became significant after additional adjustment for InsAUC0–30/GluAUC0–30. Nine SNPs did not show any associations with examined traits. CONCLUSIONS Eight type 2 diabetes–related loci were significantly or nominally associated with impaired early-phase insulin release. Effects of SLC30A8, HHEX, CDKAL1, and TCF7L2 on insulin release could be partially explained by impaired proinsulin conversion. HHEX might influence both insulin release and insulin sensitivity.
European Journal of Endocrinology | 2013
Hanna Huopio; Henna Cederberg; Jagadish Vangipurapu; Heidi Hakkarainen; Mirja Pääkkönen; Teemu Kuulasmaa; Seppo Heinonen; Markku Laakso
OBJECTIVE The aim of this study was to investigate the association of risk variants for type 2 diabetes (T2D) and hyperglycemia with gestational diabetes (GDM). DESIGN AND METHODS Five hundred and thirty-three Finnish women who were diagnosed with GDM and 407 controls with normal glucose tolerance during the pregnancy were genotyped for 69 single-nucleotide polymorphisms (SNPs) which have been previously verified as susceptibility risk variants for T2D and hyperglycemia. All participants underwent an oral glucose tolerance test at the follow-up study after the index pregnancy. RESULTS Risk variants rs10830963 and rs1387153 of MTNR1B were significantly associated with GDM (odds ratio (OR)=1.62 (95% CI 1.34-1.96), P=4.5 × 10⁻⁷ and 1.38 (1.14-1.66), P=7.6 × 10⁻⁴ respectively). Both SNPs of MTNR1B were also significantly associated with elevated fasting glucose level and reduced insulin secretion at follow-up. Additionally, risk variants rs9939609 of FTO, rs2796441 of TLE1, rs560887 of G6PC2, rs780094 of GCKR, rs7903146 of TCF7L2 and rs11708067 of ADCY5 showed nominally significant associations with GDM (OR range from 1.25 to 1.30). CONCLUSIONS Our study suggests that GDM and T2D share a similar genetic background. Our findings also provide further evidence that risk variants of MTNR1B are associated with GDM by increasing fasting plasma glucose and decreasing insulin secretion.
Diabetes | 2007
Laura Andrulionyte; Teemu Kuulasmaa; Jean-Louis Chiasson; Markku Laakso
Peroxisome proliferator–activated receptor (PPAR) α, a transcription factor of the nuclear receptor superfamily, regulates fatty acid oxidation. We evaluated the association of single nucleotide polymorphisms (SNPs) of the PPAR-α gene (PPARA) with the conversion from impaired glucose tolerance to type 2 diabetes in 767 subjects of the STOP-NIDDM trial in order to investigate the effect of acarbose in comparison with placebo on the prevention of diabetes. In the placebo group, the G (162V) allele of rs1800206 increased the risk for diabetes by 1.9-fold (95% CI 1.05–3.58) and was associated with elevated levels of plasma glucose and insulin. The effect of this allele on the risk of diabetes in the placebo group was enhanced by the simultaneous presence of the risk alleles of the PPAR-γ2, PPAR-γ coactivator 1α, and hepatic nuclear factor 4α genes (odds ratios 2.2, 2.5, and 3.4, respectively). In the acarbose group, subjects carrying the minor G allele of rs4253776 and the CC genotype of rs4253778 of PPARA had a 1.7- and 2.7-fold increased risk for diabetes. Our data indicate that SNPs of PPARA increase the risk of type 2 diabetes alone and in combination with the SNPs of other genes acting closely with PPAR-α.
PLOS Genetics | 2009
Hana Koutnikova; Markku Laakso; Lu Lu; Roy Combe; Jussi Paananen; Teemu Kuulasmaa; Johanna Kuusisto; Hans-Ulrich Häring; Torben Hansen; Oluf Pedersen; Ulf Smith; Markolf Hanefeld; Robert W. Williams; Johan Auwerx
Hypertension is a major health problem of largely unknown genetic origins. To identify new genes responsible for hypertension, genetic analysis of recombinant inbred strains of mice followed by human association studies might prove powerful and was exploited in our current study. Using a set of 27 recombinant BXD strains of mice we identified a quantitative trait locus (QTL) for blood pressure (BP) on distal chromosome 9. The association analysis of markers encompassing the syntenic region on human chromosome 3 gave in an additive genetic model the strongest association for rs17030583 C/T and rs2291897 G/A, located within the UBP1 locus, with systolic and diastolic BP (rs17030583: 1.3±0.4 mmHg p<0.001, 0.8±0.3 mmHg p = 0.006, respectively and rs2291897: 1.5±0.4 mmHg p<0.001, 0.8±0.3 mmHg p = 0.003, respectively) in three separate studies. Our study, which underscores the marked complementarities of mouse and human genetic approaches, identifies the UBP1 locus as a critical blood pressure determinant. UBP1 plays a role in cholesterol and steroid metabolism via the transcriptional activation of CYP11A, the rate-limiting enzyme in pregnenolone and aldosterone biosynthesis. We suggest that UBP1 and its functional partners are components of a network controlling blood pressure.
Journal of Lipid Research | 2017
Markku Laakso; Johanna Kuusisto; Alena Stančáková; Teemu Kuulasmaa; Päivi Pajukanta; Aldons J. Lusis; Francis S. Collins; Karen L. Mohlke; Michael Boehnke
The Metabolic Syndrome in Men (METSIM) study is a population-based study including 10,197 Finnish men examined in 2005–2010. The aim of the study is to investigate nongenetic and genetic factors associated with the risk of T2D and CVD, and with cardiovascular risk factors. The protocol includes a detailed phenotyping of the participants, an oral glucose tolerance test, fasting laboratory measurements including proton NMR measurements, mass spectometry metabolomics, adipose tissue biopsies from 1,400 participants, and a stool sample. In our ongoing follow-up study, we have, to date, reexamined 6,496 participants. Extensive genotyping and exome sequencing have been performed for essentially all METSIM participants, and >2,000 METSIM participants have been whole-genome sequenced. We have identified several nongenetic markers associated with the development of diabetes and cardiovascular events, and participated in several genetic association studies to identify gene variants associated with diabetes, hyperglycemia, and cardiovascular risk factors. The generation of a phenotype and genotype resource in the METSIM study allows us to proceed toward a “systems genetics” approach, which includes statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein, or metabolite levels, to provide a global view of the molecular architecture of complex traits.
PLOS ONE | 2015
Jagadish Vangipurapu; Alena Stančáková; Teemu Kuulasmaa; Johanna Kuusisto; Markku Laakso
Background Hyperproinsulinemia is an indicator of β-cell dysfunction, and fasting proinsulin levels are elevated in patients with hyperglycemia. It is not known whether proinsulin levels after a glucose load are better predictors of hyperglycemia and type 2 diabetes than fasting proinsulin. Methods Participants were 9,396 Finnish men (mean±SD, age 57.3±7.1 years, BMI 27.0±4.0 kg/m2) of the population-based METabolic Syndrome In Men Study who were non-diabetic at the recruitment, and who participated in a 6-year follow-up study. Proinsulin and insulin levels were measured in the fasting state and 30 and 120 min after an oral glucose load. Area under the curve (AUC) and proinsulin to insulin ratios were calculated. Results Fasting proinsulin, proinsulin at 30 min and proinsulin AUC during the first 30 min of an oral glucose tolerance test significantly predicted both the worsening of hyperglycemia and type 2 diabetes after adjustment for confounding factors. Further adjustment for insulin sensitivity (Matsuda index) or insulin secretion (Disposition index) weakened these associations. Insulin sensitivity had a major impact on these associations. Conclusion Our results suggest that proinsulin in the fasting state and after an oral glucose load similarly predict the worsening of hyperglycemia and conversion to type 2 diabetes.
PLOS ONE | 2013
Henna Cederberg; Helena Gylling; Tatu A. Miettinen; Jussi Paananen; Jagadish Vangipurapu; Jussi Pihlajamäki; Teemu Kuulasmaa; Alena Stančáková; Ulf Smith; Johanna Kuusisto; Markku Laakso
We investigated the levels of non-cholesterol sterols as predictors for the development of hyperglycemia (an increase in the glucose area under the curve in an oral glucose tolerance test) and incident type 2 diabetes in a 5-year follow-up study of a population-based cohort of Finnish men (METSIM Study, N = 1,050) having non-cholesterol sterols measured at baseline. Additionally we determined the association of 538,265 single nucleotide polymorphisms (SNP) with non-cholesterol sterol levels in a cross-sectional cohort of non-diabetic offspring of type 2 diabetes (the Kuopio cohort of the EUGENE2 Study, N = 273). We found that in a cross-sectional METSIM Study the levels of sterols indicating cholesterol absorption were reduced as a function of increasing fasting glucose levels, whereas the levels of sterols indicating cholesterol synthesis were increased as a function of increasing 2-hour glucose levels. A cholesterol synthesis marker desmosterol significantly predicted an increase, and two absorption markers (campesterol and avenasterol) a decrease in the risk of hyperglycemia and incident type 2 diabetes in a 5-year follow-up of the METSIM cohort, mainly attributable to insulin sensitivity. A SNP of ABCG8 was associated with fasting plasma glucose levels in a cross-sectional study but did not predict hyperglycemia or incident type 2 diabetes. In conclusion, the levels of some, but not all non-cholesterol sterols are markers of the worsening of hyperglycemia and type 2 diabetes.
Amino Acids | 2010
Eija Pirinen; Helena Gylling; Paula Itkonen; Nagendra Yaluri; Sami Heikkinen; Marko Pietilä; Teemu Kuulasmaa; Maija Tusa; Marc Cerrada-Gimenez; Jussi Pihlajamäki; Leena Alhonen; Juhani Jänne; Tatu A. Miettinen; Markku Laakso
Transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N1-acetyltransferase (SSAT) have significantly reduced plasma total cholesterol levels. In our study, we show that low cholesterol levels were attributable to enhanced bile acid synthesis in combination with reduced cholesterol absorption. Hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme catalyzing the conversion of cholesterol to bile acids, plays an important role in the removal of excess cholesterol from the body. We suggest that by reducing activity of Akt activated polyamine catabolism increased the stability and activity of peroxisome proliferator-activated receptor γ co-activator 1α, the critical activator of CYP7A1. This is supported by our finding that the treatment with SSAT activator, N1,N11-diethylnorspermine, reduced significantly the amount of phosphorylated (active) Akt in HepG2 cells. In summary, activated-polyamine catabolism is a novel mechanism to regulate bile acid synthesis. Therefore, polyamine catabolism could be a potential therapeutic target to control hepatic CYP7A1 expression.
Obesity | 2007
Jarno Rutanen; Jussi Pihlajamäki; Markku Vänttinen; Urpu Salmenniemi; Eija Ruotsalainen; Teemu Kuulasmaa; Sakari Kainulainen; Johanna Kuusisto; Markku Laakso
Melanin concentrating hormone receptor‐1 (MCHR1) is a centrally and peripherally expressed receptor that regulates energy expenditure and appetite. Single nucleotide polymorphisms (SNPs) of the MCHR1 gene have been previously associated with obesity, but the results are inconsistent among different populations. This study was performed to determine whether SNPs of MCHR1 affect glucose and energy metabolism. We screened six SNPs of MCHR1 in a cross‐sectional study of 217 middle‐age, non‐diabetic Finnish subjects who were offspring of type 2 diabetic patients. Insulin secretion was evaluated by an intravenous glucose tolerance test and insulin sensitivity and energy metabolism by the hyperinsulinemic euglycemic clamp and indirect calorimetry. SNPs of MCHR1 were not associated with BMI, waist circumference, subcutaneous or intra‐abdominal fat area, glucose tolerance, first‐phase insulin release, insulin sensitivity, or energy metabolism. One SNP, which was in >0.50 linkage disequilibrium with the other five SNPs, was also screened in 1455 unrelated Finnish middle‐age subjects in a population‐based study. No differences in BMI, waist circumference, or glucose or insulin levels in an oral glucose tolerance test among the genotypes were found. In conclusion, SNPs of MCHR1 did not have effects on metabolic variables in humans.