Teresa Lettieri
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teresa Lettieri.
Nature | 2011
Daniel Cortázar; Christophe Kunz; Jim Selfridge; Teresa Lettieri; Yusuke Saito; Eilidh MacDougall; Annika Wirz; David Schuermann; Angelika L. Jacobs; Fredy Siegrist; Roland Steinacher; Josef Jiricny; Adrian Bird; Primo Schär
Thymine DNA glycosylase (TDG) is a member of the uracil DNA glycosylase (UDG) superfamily of DNA repair enzymes. Owing to its ability to excise thymine when mispaired with guanine, it was proposed to act against the mutability of 5-methylcytosine (5-mC) deamination in mammalian DNA. However, TDG was also found to interact with transcription factors, histone acetyltransferases and de novo DNA methyltransferases, and it has been associated with DNA demethylation in gene promoters following activation of transcription, altogether implicating an engagement in gene regulation rather than DNA repair. Here we use a mouse genetic approach to determine the biological function of this multifaceted DNA repair enzyme. We find that, unlike other DNA glycosylases, TDG is essential for embryonic development, and that this phenotype is associated with epigenetic aberrations affecting the expression of developmental genes. Fibroblasts derived from Tdg null embryos (mouse embryonic fibroblasts, MEFs) show impaired gene regulation, coincident with imbalanced histone modification and CpG methylation at promoters of affected genes. TDG associates with the promoters of such genes both in fibroblasts and in embryonic stem cells (ESCs), but epigenetic aberrations only appear upon cell lineage commitment. We show that TDG contributes to the maintenance of active and bivalent chromatin throughout cell differentiation, facilitating a proper assembly of chromatin-modifying complexes and initiating base excision repair to counter aberrant de novo methylation. We thus conclude that TDG-dependent DNA repair has evolved to provide epigenetic stability in lineage committed cells.
PLOS Biology | 2009
Christophe Kunz; Frauke Focke; Yusuke Saito; David Schuermann; Teresa Lettieri; Jim Selfridge; Primo Schär
5-Fluorouracil (5-FU), a chemotherapeutic drug commonly used in cancer treatment, imbalances nucleotide pools, thereby favoring misincorporation of uracil and 5-FU into genomic DNA. The processing of these bases by DNA repair activities was proposed to cause DNA-directed cytotoxicity, but the underlying mechanisms have not been resolved. In this study, we investigated a possible role of thymine DNA glycosylase (TDG), one of four mammalian uracil DNA glycosylases (UDGs), in the cellular response to 5-FU. Using genetic and biochemical tools, we found that inactivation of TDG significantly increases resistance of both mouse and human cancer cells towards 5-FU. We show that excision of DNA-incorporated 5-FU by TDG generates persistent DNA strand breaks, delays S-phase progression, and activates DNA damage signaling, and that the repair of 5-FU–induced DNA strand breaks is more efficient in the absence of TDG. Hence, excision of 5-FU by TDG, but not by other UDGs (UNG2 and SMUG1), prevents efficient downstream processing of the repair intermediate, thereby mediating DNA-directed cytotoxicity. The status of TDG expression in a cancer is therefore likely to determine its response to 5-FU–based chemotherapy.
Progress in Nucleic Acid Research and Molecular Biology | 2001
Ulrike Hardeland; Marl Bentele; Teresa Lettieri; Roland Steinacher; Josef Jiricny; Primo Schär
More than 50% of colon cancer-associated mutations in the p53 tumor suppressor gene are C-->T transitions. The majority of them locate in CpG dinucleotides and are thought to have arisen through spontaneous hydrolytic deamination of 5-methylcytosine. This deamination process gives rise to G.T mispairs that need to be repaired to G.C in order to avoid C-->T mutation. Similarly, deamination of cytosine generates G.U mispairs that also produce C-->T transitions if not repaired. Restoration of both G.T and G.U mismatches was shown to be mediated by a short-patch excision repair pathway, and one principal player implicated in this process may be thymine DNA glycosylase (TDG). Human TDG was discovered as an enzyme that has the potential to specifically remove thymine and uracil bases mispaired with guanine through hydrolysis of their N-glycosidic bond, thereby generating abasic sites in DNA and initiating a base excision repair reaction. The same protein was later found to interact physically and functionally with the retinoid receptors RAR and RXR, and this implicated an unexpected function of TDG in nuclear receptor-mediated transcriptional activation of gene expression. The objective of this chapter is to put together the results of different lines of experimentation that have explored the thymine DNA glycosylase since its discovery and to critically evaluate their implications for possible physiological roles of this enzyme.
Genes, Chromosomes and Cancer | 1998
Lauretta Levati; Giancarlo Marra; Teresa Lettieri; Stefania D'Atri; Patrizia Vernole; Lucio Tentori; Pedro Miguel Lacal; Elena Pagani; Enzo Bonmassar; Josef Jiricny; Grazia Graziani
Cell killing by monofunctional methylating agents is due mainly to the formation of adducts at the O6 position of guanine. These methyl adducts are removed from DNA by the O6‐alkylguanine DNA alkyltransferase (OGAT). The mechanism by which O6‐methylguanine (O6meG) induces cell death in OGAT‐deficient cells requires a functional mismatch repair system (MRS). We have previously reported that depletion of OGAT activity in the human T‐cell leukemic Jurkat line does not sensitize these cells to the cytotoxic and apoptotic effects of the methylating triazene temozolomide (Tentori et al., 1995). We therefore decided to establish whether the tolerance of Jurkat cells to O6meG could be associated with a defect in MRS. The results of mismatch repair complementation studies indicated that Jurkat cells are defective in hMutSα, a heterodimer of the hMSH2 and hMSH6 proteins. Cytogenetic analysis of two Jurkat clones revealed a deletion in the short arm of chromosome region 2p15–21, indicating an allelic loss of both hMSH2 and hMSH6 genes. DNA sequencing revealed that exon 13 of the second hMSH2 allele contains a base substitution at codon 711, which changes an arginine to a termination codon (CGA→TGA). In addition, a (C)8→(C)7 frameshift mutation in codon 1085–1087 of the hMSH6 gene was also found. Although both hMSH2 and hMSH6 transcripts could be detected in Jurkat clones, the respective polypeptides were absent. Taken together, these data indicate that tolerance of Jurkat cells to methylation damage is linked to a loss of functional hMutSα. Genes Chromosomes Cancer 23:159–166, 1998.
DNA Repair | 2008
Teresa Lettieri; Rolf Kraehenbuehl; Christoph Capiaghi; Magdalena Livingstone-Zatchej; Fritz Thoma
In yeast, Rad7 and Rad16 are two proteins required for nucleotide excision repair (NER) of non-transcribed chromatin. They have roles in damage recognition, in the postincision steps of NER, and in ultraviolet-light-dependent histone H3 acetylation. Moreover, Rad16 is an ATP-ase of the SNF2 superfamily and therefore might facilitate chromatin repair by nucleosome remodelling. Here, we used yeast rad7 Delta rad16 Delta mutants and show that Rad7-Rad16 is also required for NER of UV-lesions in three functionally distinct nucleosome-free regions (NFRs), the promoter and 3-end of the URA3 gene and the ARS1 origin of replication. Moreover, rapid repair of UV-lesions by photolyase confirmed that nucleosomes were absent and that neither UV-damage formation nor rad7 Delta rad16 Delta mutations altered chromatin accessibility in NFRs. The data are consistent with a role of Rad7-Rad16 in damage recognition and processing in absence of nucleosomes. An additional role in nucleosome remodelling is discussed.
Science | 1995
Fabio Palombo; Paola Gallinari; Ingram Iaccarino; Teresa Lettieri; Melya J. Hughes; A. D'arrigo; Oanh Truong; J. Justin Hsuan; Josef Jiricny
Genes & Development | 2001
Hanna E. Kleczkowska; Giancarlo Marra; Teresa Lettieri; Josef Jiricny
Journal of Biological Chemistry | 1996
Petra Neddermann; Paola Gallinari; Teresa Lettieri; Daniel Schmid; Oanh Truong; J. Justin Hsuan; Karin Wiebauer; Josef Jiricny
Proceedings of the National Academy of Sciences of the United States of America | 1998
Giancarlo Marra; Ingram Iaccarino; Teresa Lettieri; Giuseppe Roscilli; Paola Delmastro; Josef Jiricny
Carcinogenesis | 1999
Teresa Lettieri; Giancarlo Marra; Gabriele Aquilina; Margherita Bignami; Nigel E.A. Crompton; Fabio Palombo; Josef Jiricny