Terry J. McGenity
University of Essex
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Terry J. McGenity.
Aquatic Biosystems | 2012
Terry J. McGenity; Benjamin D. Folwell; Boyd A. McKew; Gbemisola O. Sanni
The marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent decades; however, individual populations of microbes do not function alone in nature. The diverse array of hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial modification of oil components and the surrounding environment will lead to temporal succession. But even when just one type of hydrocarbon is present, a network of direct and indirect interactions within and between species is observed. In this review we consider competition for resources, but focus on some of the key cooperative interactions: consumption of metabolites, biosurfactant production, provision of oxygen and fixed nitrogen. The emphasis is largely on aerobic processes, and especially interactions between bacteria, fungi and microalgae. The self-construction of a functioning community is central to microbial success, and learning how such “microbial modules” interact will be pivotal to enhancing biotechnological processes, including the bioremediation of hydrocarbons.
Nature | 2006
Daniele Daffonchio; Sara Borin; Tullio Brusa; L. Brusetti; P.W.J.J. van der Wielen; H. Bolhuis; Michail M. Yakimov; Giuseppe D'Auria; D. Marty; L. Giuliano; C. Tamburini; Terry J. McGenity; John E. Hallsworth; Andrea Sass; Kenneth N. Timmis; A. Tselepides; G.J. de Lange; Andreas Hübner; J. Thomson; S.P. Varnavas; F. Gasperoni; H.W. Gerber; Elisa Malinverno; C. Corselli
The chemical composition of the Bannock basin has been studied in some detail. We recently showed that unusual microbial populations, including a new division of Archaea (MSBL1), inhabit the NaCl-rich hypersaline brine. High salinities tend to reduce biodiversity, but when brines come into contact with fresher water the natural haloclines formed frequently contain gradients of other chemicals, including permutations of electron donors and acceptors, that may enhance microbial diversity, activity and biogeochemical cycling. Here we report a 2.5-m-thick chemocline with a steep NaCl gradient at 3.3 km within the water column betweeen Bannock anoxic hypersaline brine and overlying sea water. The chemocline supports some of the most biomass-rich and active microbial communities in the deep sea, dominated by Bacteria rather than Archaea, and including four major new divisions of Bacteria. Significantly higher metabolic activities were measured in the chemocline than in the overlying sea water and underlying brine; functional analyses indicate that a range of biological processes is likely to occur in the chemocline. Many prokaryotic taxa, including the phylogenetically new groups, were confined to defined salinities, and collectively formed a diverse, sharply stratified, deep-sea ecosystem with sufficient biomass to potentially contribute to organic geological deposits.
Extremophiles | 1998
William D. Grant; Renia T. Gemmell; Terry J. McGenity
Abstract Subterranean salt deposits are the remains of ancient hypersaline waters that presumably supported dense populations of halophilic microorganisms including representatives of the haloarchaea (halobacteria). Ancient subterranean salt deposits (evaporites) are common throughout the world, and the majority sampled to date appear to support diverse populations of halobacteria. The inaccessibility of deep subsurface deposits, and the special requirements of these organisms for survival, make contamination by halobacteria from surface sites unlikely. It is conceivable that these subterranean halobacteria are autochthonous, presumably relict populations derived from ancient hypersaline seas that have been revived from a state of dormancy. One would predict that halobacteria that have been insulated and isolated inside ancient evaporites would be different from comparable bacteria from surface environments, and that it might be possible to use a molecular chronometer to establish if the evolutionary position of the subsurface isolates correlated with the geological age of the evaporite. Extensive comparisons have been made between the 16S rRNA genes of surface and subsurface halobacteria without showing any conclusive differences between the two groups. A further phylogenetic comparison exploits an unusual feature of one particular group of halobacteria that possess at least two heterogeneous copies of the 16S rRNA gene, the sequences of which may have been converging or diverging over geological time. However, results to date have yet to show any gene sequence differences between surface and evaporite-derived halobacteria that might arguably be an indication of long-term dormancy.
International Journal of Systematic and Evolutionary Microbiology | 1994
Ewald B. M. Denner; Terry J. McGenity; Hans-Jürgen Busse; William D. Grant; Gerhard Wanner; Helga Stan-Lotter
A novel extremely halophilic archaeon (archaebacterium) was isolated from rock salt obtained from an Austrian salt mine. The deposition of the salt is thought to have occurred during the Permian period (225 × 106 to 280 × 106 years ago). This organism grew over a pH range of 6.8 to 9.5. Electron microscopy revealed cocci in tetrads or larger clusters. The partial 16S rRNA sequences, polar lipid composition, and menaquinone content suggested that this organism was related to members of the genus Halococcus, while the whole-cell protein patterns, the presence of several unknown lipids, and the presence of pink pigmentation indicated that it was different from previously described coccoid halophiles. We propose that this isolate should be recognized as a new species and should be named Halococcus salifodinae. The type strain is Blp (= ATCC 51437 = DSM 8989). A chemotaxonomically similar microorganism was isolated from a British salt mine.
Systematic and Applied Microbiology | 1995
Terry J. McGenity; William D. Grant
Summary Analyses of 16S rRNA gene sequences from Halobacterium saccharovorum NCIMB 2081, Hb. sodomense ATCC 33755, Hb. lacusprofundi ACAM 34, and Hb. trapanicum NRC 34021 indicate that these four species are phylogenetically distinct from Hb. salinarium, the only species in the genus Halobactenum sensu stricto. In addition, these four species comprise a phylogenetic group, distinct from all other halobacteria. Accordingly, we propose that Halobacterium saccharovorum, Hb. sodomense, Hb. trapanicum NRC 34021 and Hb. lacusprofundi should be classified in the new genus, Halorubrum.
FEMS Microbiology Ecology | 2008
Sandrine Païssé; Frédéric Coulon; Marisol Goñi-Urriza; Louis Peperzak; Terry J. McGenity; Robert Duran
The bacterial diversity of a chronically oil-polluted retention basin sediment located in the Berre lagoon (Etang-de-Berre, France) was investigated. This study combines chemical and molecular approaches in order to define how the in situ petroleum hydrocarbon contamination level affects the bacterial community structure of a subsurface sediment. Hydrocarbon content analysis clearly revealed a gradient of hydrocarbon contamination in both the water and the sediment following the basin periphery from the pollution input to the lagoon water. The nC17 and pristane concentrations suggested alkane biodegradation in the sediments. These results, combined with those of terminal-restriction fragment length polymorphism analysis of the 16S rRNA genes, indicated that bacterial community structure was obviously associated with the gradient of oil contamination. The analysis of bacterial community composition revealed dominance of bacteria related to the Proteobacteria phylum (Gamma-, Delta-, Alpha-, Epsilon- and Betaproteobacteria), Bacteroidetes and Verrucomicrobium groups and Spirochaetes, Actinobacteria and Cyanobacteria phyla. The adaptation of the bacterial community to oil contamination was not characterized by dominance of known oil-degrading bacteria, because a predominance of populations associated to the sulphur cycle was observed. The input station presented particular bacterial community composition associated with a low oil concentration in the sediment, indicating the adaptation of this community to the oil contamination.
Nature | 2002
Steven Anthony Fish; Thomas J. Shepherd; Terry J. McGenity; William D. Grant
During the last decade, sensitive techniques for detecting DNA have been successfully applied to archaeological and other samples that were a few hundred to a few thousand years old. Nevertheless, there is still controversy and doubt over claims of exceptionally ancient DNA. Additional accounts stretching back nearly a century suggest that microorganisms may survive over geological time in evaporite deposits. There is, however, often doubt over the age relationship between evaporite formation and the incorporation of microorganisms. Here, we have used petrographic and geochemical techniques (laser ablation microprobe–inductively coupled plasma–mass spectrometry) to verify the estimated geological age of halite (NaCl) evaporite samples. Fragments of 16S ribosomal RNA genes were detected by polymerase chain reaction amplification of DNA extracted from halite samples ranging in age from 11 to 425 Myr (millions of years). Haloarchaeal 16S rDNA amplicons were present in one sample (11–16 Myr), whereas other samples (65–425 Myr) yielded only bacterial 16S rDNA amplicons. Terminal restriction fragment length polymorphism analyses indicate complex and different populations of microorganisms or their free DNA in ancient halites of different ages.
Microbiology | 1993
Cynthia F. Norton; Terry J. McGenity; William D. Grant
Summary: Samples were taken from the Winsford salt mine in Cheshire, England, which exploits bedded deposits from the Triassic Period (195-225 million years ago, MYA) and from Boulby potash mine in Cleveland, England, which is Permian (225-270 MYA) and is mined for the mineral sylvite (KCl). Halobacteria and obligately halophilic eubacteria were isolated from several different sample types. The halobacteria were characterized by chemotaxonomic methods and most but not all were shown to be very similar but not identical to those halobacterial types that dominate in highly concentrated surface brines. There was a high degree of similarity between the two mine populations, but some strains were particular to each mine.
Archive | 2008
Frédéric Coulon; Louis Peperzak; Terry J. McGenity; Robert Duran
The bacterial diversity of a chronically oil-polluted retention basin sediment located in the Berre lagoon (Etang-de-Berre, France) was investigated. This study combines chemical and molecular approaches in order to define how the in situ petroleum hydrocarbon contamination level affects the bacterial community structure of a subsurface sediment. Hydrocarbon content analysis clearly revealed a gradient of hydrocarbon contamination in both the water and the sediment following the basin periphery from the pollution input to the lagoon water. The nC17 and pristane concentrations suggested alkane biodegradation in the sediments. These results, combined with those of terminal-restriction fragment length polymorphism analysis of the 16S rRNA genes, indicated that bacterial community structure was obviously associated with the gradient of oil contamination. The analysis of bacterial community composition revealed dominance of bacteria related to the Proteobacteria phylum (Gamma-, Delta-, Alpha-, Epsilon- and Betaproteobacteria), Bacteroidetes and Verrucomicrobium groups and Spirochaetes, Actinobacteria and Cyanobacteria phyla. The adaptation of the bacterial community to oil contamination was not characterized by dominance of known oil-degrading bacteria, because a predominance of populations associated to the sulphur cycle was observed. The input station presented particular bacterial community composition associated with a low oil concentration in the sediment, indicating the adaptation of this community to the oil contamination.
The ISME Journal | 2015
Andrew Stevenson; Jonathan A. Cray; James P. Williams; Ricardo Santos; Richa Sahay; Nils Neuenkirchen; Colin D. McClure; Irene R. Grant; Jonathan D. R. Houghton; John P. Quinn; David J. Timson; Satish V. Patil; Rekha S. Singhal; Josefa Antón; Jan Dijksterhuis; Ailsa D. Hocking; Bart Lievens; Drauzio E.N. Rangel; Mary A. Voytek; Nina Gunde-Cimerman; Aharon Oren; Kenneth N. Timmis; Terry J. McGenity; John E. Hallsworth
Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (aw) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650–0.605 aw. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 aw). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 aw for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life.