Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corinne Whitby is active.

Publication


Featured researches published by Corinne Whitby.


Advances in Applied Microbiology | 2010

Microbial naphthenic Acid degradation.

Corinne Whitby

Naphthenic acids (NAs) are an important group of trace organic pollutants predominantly comprising saturated aliphatic and alicyclic carboxylic acids. NAs are ubiquitous; occurring naturally in hydrocarbon deposits (petroleum, oil sands, bitumen, and crude oils) and also have widespread industrial uses. Consequently, NAs can enter the environment from both natural and anthropogenic processes. NAs are highly toxic, recalcitrant compounds that persist in the environment for many years, and it is important to develop efficient bioremediation strategies to decrease both their abundance and toxicity in the environment. However, the diversity of microbial communities involved in NA-degradation, and the mechanisms by which NAs are biodegraded, are poorly understood. This lack of knowledge is mainly due to the difficulties in identifying and purifying individual carboxylic acid compounds from complex NA mixtures found in the environment, for microbial biodegradation studies. This paper will present an overview of NAs, their origin and fate in the environment, and their toxicity to the biota. The review describes the microbial degradation of both naturally occurring and chemically synthesized NAs. Proposed pathways for aerobic NA biodegradation, factors affecting NA biodegradation rates, and possible bioremediation strategies are also discussed.


The ISME Journal | 2011

Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching

Richard J. Johnson; Ben E. Smith; Paul A. Sutton; Terry J. McGenity; Steven J. Rowland; Corinne Whitby

Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA).


Letters in Applied Microbiology | 2001

13C incorporation into DNA as a means of identifying the active components of ammonia-oxidizer populations

Corinne Whitby; G. Hall; Roger W. Pickup; Jon R. Saunders; P. Ineson; N.R. Parekh; Alan J. McCarthy

Aims: To identify active CO2‐assimilating species of ammonia‐oxidizing bacteria in fresh water sediment.


Applied and Environmental Microbiology | 2015

amoA Gene Abundances and Nitrification Potential Rates Suggest that Benthic Ammonia-Oxidizing Bacteria and Not Archaea Dominate N Cycling in the Colne Estuary, United Kingdom

Jialin Li; David B. Nedwell; Jessica Beddow; Alex J. Dumbrell; Boyd A. McKew; Emma L. Thorpe; Corinne Whitby

ABSTRACT Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw]−1 day−1 in June, increasing to 37.4 μmol N gdw−1 day−1 in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw−1 day−1 in June, increasing to 11.7 μmol N gdw−1 day−1 in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification.


Applied and Environmental Microbiology | 2012

Characterization of geographically distinct bacterial communities associated with coral mucus produced by Acropora spp. and Porites spp.

Boyd A. McKew; Alex J. Dumbrell; S D Daud; Leanne J. Hepburn; E Thorpe; L Mogensen; Corinne Whitby

ABSTRACT Acropora and Porites corals are important reef builders in the Indo-Pacific and Caribbean. Bacteria associated with mucus produced by Porites spp. and Acropora spp. from Caribbean (Punta Maroma, Mexico) and Indo-Pacific (Hoga and Sampela, Indonesia) reefs were determined. Analysis of pyrosequencing libraries showed that bacterial communities from Caribbean corals were significantly more diverse (H′, 3.18 to 4.25) than their Indonesian counterparts (H′, 2.54 to 3.25). Dominant taxa were Gammaproteobacteria, Alphaproteobacteria, Firmicutes, and Cyanobacteria, which varied in relative abundance between coral genera and region. Distinct coral host-specific communities were also found; for example, Clostridiales were dominant on Acropora spp. (at Hoga and the Mexican Caribbean) compared to Porites spp. and seawater. Within the Gammproteobacteria, Halomonas spp. dominated sequence libraries from Porites spp. (49%) and Acropora spp. (5.6%) from the Mexican Caribbean, compared to the corresponding Indonesian coral libraries (<2%). Interestingly, with the exception of Porites spp. from the Mexican Caribbean, there was also a ubiquity of Psychrobacter spp., which dominated Acropora and Porites libraries from Indonesia and Acropora libraries from the Caribbean. In conclusion, there was a dominance of Halomonas spp. (associated with Acropora and Porites [Mexican Caribbean]), Firmicutes (associated with Acropora [Mexican Caribbean] and with Acropora and Porites [Hoga]), and Cyanobacteria (associated with Acropora and Porites [Hoga] and Porites [Sampela]). This is also the first report describing geographically distinct Psychrobacter spp. associated with coral mucus. In addition, the predominance of Clostridiales associated with Acropora spp. provided additional evidence for coral host-specific microorganisms.


Archive | 2011

Applied Microbiology and Molecular Biology in Oilfield Systems

Corinne Whitby; Torben Lund Skovhus

Applied Microbiology and Molecular Biology in Oil Field Systems addresses the major problems microbes cause in oil fields, (e.g. biocorrosion and souring) and how beneficial microbial activities may be exploited (e.g. MEOR and biofuels). The book describes theoretical and practical approaches to specific Molecular Microbiological Methods (MMM), and is written by leading authorities in the field from both academia and industry. The book describes how MMM can be applied to faciliate better management of oil reservoirs and downstream processes. The book is innovative in that it utilises real industrial case studies which gives useful technical and scientific information to researchers, engineers and microbiologists working with oil, gas and petroleum systems.


FEMS Microbiology Ecology | 2012

Temporal and spatial changes in the microbial bioaerosol communities in green-waste composting.

Louise J. Pankhurst; Corinne Whitby; Mark Pawlett; Lee Larcombe; Boyd A. McKew; Lewis J. Deacon; Sarah L. Morgan; Raffaella Villa; Gillian H. Drew; Sean F. Tyrrel; Simon J. T. Pollard; Frédéric Coulon

In this study, the microbial community within compost, emitted into the airstream, downwind and upwind from a composting facility was characterized and compared through phospholipid fatty acid analysis and 16S rRNA gene analysis using denaturing gradient gel electrophoresis and bar-coded pyrosequencing techniques. All methods used suggested that green-waste composting had a significant impact upon bioaerosol community composition. Daily variations of the on-site airborne community showed how specific site parameters such as compost process activity and meteorological conditions affect bioaerosol communities, although more data are required to qualify and quantify the causes for these variations. A notable feature was the dominance of Pseudomonas in downwind samples, suggesting that this genus can disperse downwind in elevated abundances. Thirty-nine phylotypes were homologous to plant or human phylotypes containing pathogens and were found within compost, on-site and downwind microbial communities. Although the significance of this finding in terms of potential health impact was beyond the scope of this study, it clearly illustrated the potential of molecular techniques to improve our understanding of the impact that green-waste composting emissions may have on the human health.


PLOS ONE | 2014

Nitrate reduction functional genes and nitrate reduction potentials persist in deeper estuarine sediments why

Sokratis Papaspyrou; Cindy J. Smith; Liang F. Dong; Corinne Whitby; Alex J. Dumbrell; David B. Nedwell

Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases.


Environmental Microbiology Reports | 2014

Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes.

Jessica Beddow; Bjorn Stolpe; Paula A. Cole; Jamie R. Lead; Melanie Sapp; Brett P. Lyons; I. Colbeck; Corinne Whitby

Currently, little is known about the impact of silver nanoparticles (AgNPs) on ecologically important microorganisms such as ammonia-oxidizing bacteria (AOB). We performed a multi-analytical approach to demonstrate the effects of uncapped nanosilver (uAgNP), capped nanosilver (cAgNP) and Ag2SO4 on the activities of the AOB: Nitrosomonas europaea, Nitrosospira multiformis and Nitrosococcus oceani, and the growth of Escherichia coli and Bacillus subtilis as model bacterial systems in relation to AgNP type and concentration. All Ag treatments caused significant inhibition to the nitrification potential rates (NPRs) of Nitrosomonas europaea (decreased from 34 to < 16.7 μM NH4+ oxidized day−1), Nitrosospira multiformis (decreased from 46 to < 24.8 μM NH4+ oxidized day−1) and Nitrosococcus oceani (decreased from 26 to < 18.4 μM NH4+ oxidized day−1). Escherichia coli-Ag interactions revealed that the percentage of damaged E. coli cells was 45% greater with Ag2SO4, 39% with cAgNPs and 33% with uAgNPs compared with controls. Generally, the inhibitory effect on AOB NPRs and E. coli/B. subtilis growth was in the following order Ag2SO4 > cAgNP > uAgNP. In conclusion, AgNPs (especially cAgNPs) and Ag2SO4 adversely affected AOB activities and thus have the potential to severely impact key microbially driven processes such as nitrification in the environment.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2001

A comparison of ammonia-oxidiser populations in eutrophic and oligotrophic basins of a large freshwater lake

Corinne Whitby; Saunders; Roger W. Pickup; Alan J. McCarthy

A combination of PCR amplification and oligonucleotide probing was used to investigate the populations of ammonia-oxidisers of the β-Proteobacteria in the eutrophic and oligotrophic basins of Lake Windermere, a large temperate lake in the English Lake District. Numbers of ammonia-oxidisers (MPN) in the Windermere lakewater were low (< 100 cells ml−1) throughout the year with the exception of peaks in August, which coincided with stratification, and November in the South Basin where overturn may have introduced ammonia-oxidising bacteria into the water column. Sediment samples contained larger populations of ammonia oxidisers, usually ca. 104 per g. dry weight, which remained relatively constant throughout the seasonal cycle in both Basins. DNA was recovered from lakewater and sediment samples and Nitrosospiraand N. europaea-eutrophalineage16S rRNA genes amplified in a nested PCR reaction, with confirmation of identity by oligonucleotide hybridisation. Nitrosospira 16S rDNA was readily detected in all samples and therefore found to be ubiquitous. In contrast, nitrosomonad DNA of the N. europaea-eutropha lineage could only be detected in the oligotrophic North Basin. Enrichment cultures of lakewater samples only exhibited nitrification at low (0.67 mM) and medium (5 mM) ammonium concentrations, whilst sediment enrichments nitrified at all concentrations tested including high (12.5 mM) ammonium medium. These data suggest that ammonia-oxidiser populations may be physiologically distinguished between lakewater and sediment, and that species distribution in a single lake is non-uniform.

Collaboration


Dive into the Corinne Whitby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cindy J. Smith

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge