Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boyd A. McKew is active.

Publication


Featured researches published by Boyd A. McKew.


Aquatic Biosystems | 2012

Marine crude-oil biodegradation: a central role for interspecies interactions

Terry J. McGenity; Benjamin D. Folwell; Boyd A. McKew; Gbemisola O. Sanni

The marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent decades; however, individual populations of microbes do not function alone in nature. The diverse array of hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial modification of oil components and the surrounding environment will lead to temporal succession. But even when just one type of hydrocarbon is present, a network of direct and indirect interactions within and between species is observed. In this review we consider competition for resources, but focus on some of the key cooperative interactions: consumption of metabolites, biosurfactant production, provision of oxygen and fixed nitrogen. The emphasis is largely on aerobic processes, and especially interactions between bacteria, fungi and microalgae. The self-construction of a functioning community is central to microbial success, and learning how such “microbial modules” interact will be pivotal to enhancing biotechnological processes, including the bioremediation of hydrocarbons.


The ISME Journal | 2011

Resistance and resilience of benthic biofilm communities from a temperate saltmarsh to desiccation and rewetting

Boyd A. McKew; Joe D. Taylor; Terry J. McGenity; Graham J. C. Underwood

Periods of desiccation and rewetting are regular, yet stressful events encountered by saltmarsh microbial communities. To examine the resistance and resilience of microbial biofilms to such stresses, sediments from saltmarsh creeks were allowed to desiccate for 23 days, followed by rewetting for 4 days, whereas control sediments were maintained under a natural tidal cycle. In the top 2 mm of the dry sediments, salinity increased steadily from 36 to 231 over 23 days, and returned to seawater salinity on rewetting. After 3 days, desiccated sediments had a lower chlorophyll a (Chl a) fluorescence signal as benthic diatoms ceased to migrate to the surface, with a recovery in cell migration and Chl a fluorescence on rewetting. Extracellular β-glucosidase and aminopeptidase activities decreased within the first week of drying, but increased sharply on rewetting. The bacterial community in the desiccating sediment changed significantly from the controls after 14 days of desiccation (salinity 144). Rewetting did not cause a return to the original community composition, but led to a further change. Pyrosequencing analysis of 16S rRNA genes amplified from the sediment revealed diverse microbial responses, for example desiccation enabled haloversatile Marinobacter species to increase their relative abundance, and thus take advantage of rewetting to grow rapidly and dominate the community. A temporal sequence of effects of desiccation and rewetting were thus observed, but the most notable feature was the overall resistance and resilience of the microbial community.


Applied and Environmental Microbiology | 2012

Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats

Frédéric Coulon; Panagiota-Myrsini Chronopoulou; Anne Fahy; Sandrine Païssé; Marisol Goñi-Urriza; Louis Peperzak; Laura Acuña Alvarez; Boyd A. McKew; Corina P. D. Brussaard; Graham J. C. Underwood; Kenneth N. Timmis; Robert Duran; Terry J. McGenity

ABSTRACT Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity.


Applied and Environmental Microbiology | 2015

amoA Gene Abundances and Nitrification Potential Rates Suggest that Benthic Ammonia-Oxidizing Bacteria and Not Archaea Dominate N Cycling in the Colne Estuary, United Kingdom

Jialin Li; David B. Nedwell; Jessica Beddow; Alex J. Dumbrell; Boyd A. McKew; Emma L. Thorpe; Corinne Whitby

ABSTRACT Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw]−1 day−1 in June, increasing to 37.4 μmol N gdw−1 day−1 in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw−1 day−1 in June, increasing to 11.7 μmol N gdw−1 day−1 in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification.


New Phytologist | 2013

The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516).

Boyd A. McKew; P. A. Davey; Stewart J. Finch; Jason Hopkins; Stephane C. Lefebvre; Metodi V. Metodiev; Kevin Oxborough; Christine A. Raines; Tracy Lawson; Richard J. Geider

Mechanistic understanding of the costs and benefits of photoacclimation requires knowledge of how photophysiology is affected by changes in the molecular structure of the chloroplast. We tested the hypothesis that changes in the light dependencies of photosynthesis, nonphotochemical quenching and PSII photoinactivation arises from changes in the abundances of chloroplast proteins in Emiliania huxleyi strain CCMP 1516 grown at 30 (Low Light; LL) and 1000 (High Light; HL) μmol photons m(-2) s(-1) photon flux densities. Carbon-specific light-saturated gross photosynthesis rates were not significantly different between cells acclimated to LL and HL. Acclimation to LL benefited cells by increasing biomass-specific light absorption and gross photosynthesis rates under low light, whereas acclimation to HL benefited cells by reducing the rate of photoinactivation of PSII under high light. Differences in the relative abundances of proteins assigned to light-harvesting (Lhcf), photoprotection (LI818-like), and the photosystem II (PSII) core complex accompanied differences in photophysiology: specifically, Lhcf:PSII was greater under LL, whereas LI818:PSII was greater in HL. Thus, photoacclimation in E. huxleyi involved a trade-off amongst the characteristics of light absorption and photoprotection, which could be attributed to changes in the abundance and composition of proteins in the light-harvesting antenna of PSII.


Applied and Environmental Microbiology | 2012

Characterization of geographically distinct bacterial communities associated with coral mucus produced by Acropora spp. and Porites spp.

Boyd A. McKew; Alex J. Dumbrell; S D Daud; Leanne J. Hepburn; E Thorpe; L Mogensen; Corinne Whitby

ABSTRACT Acropora and Porites corals are important reef builders in the Indo-Pacific and Caribbean. Bacteria associated with mucus produced by Porites spp. and Acropora spp. from Caribbean (Punta Maroma, Mexico) and Indo-Pacific (Hoga and Sampela, Indonesia) reefs were determined. Analysis of pyrosequencing libraries showed that bacterial communities from Caribbean corals were significantly more diverse (H′, 3.18 to 4.25) than their Indonesian counterparts (H′, 2.54 to 3.25). Dominant taxa were Gammaproteobacteria, Alphaproteobacteria, Firmicutes, and Cyanobacteria, which varied in relative abundance between coral genera and region. Distinct coral host-specific communities were also found; for example, Clostridiales were dominant on Acropora spp. (at Hoga and the Mexican Caribbean) compared to Porites spp. and seawater. Within the Gammproteobacteria, Halomonas spp. dominated sequence libraries from Porites spp. (49%) and Acropora spp. (5.6%) from the Mexican Caribbean, compared to the corresponding Indonesian coral libraries (<2%). Interestingly, with the exception of Porites spp. from the Mexican Caribbean, there was also a ubiquity of Psychrobacter spp., which dominated Acropora and Porites libraries from Indonesia and Acropora libraries from the Caribbean. In conclusion, there was a dominance of Halomonas spp. (associated with Acropora and Porites [Mexican Caribbean]), Firmicutes (associated with Acropora [Mexican Caribbean] and with Acropora and Porites [Hoga]), and Cyanobacteria (associated with Acropora and Porites [Hoga] and Porites [Sampela]). This is also the first report describing geographically distinct Psychrobacter spp. associated with coral mucus. In addition, the predominance of Clostridiales associated with Acropora spp. provided additional evidence for coral host-specific microorganisms.


FEMS Microbiology Ecology | 2013

Differences between aerobic and anaerobic degradation of microphytobenthic biofilm-derived organic matter within intertidal sediments

Boyd A. McKew; Alex J. Dumbrell; Joe D. Taylor; Terry J. McGenity; Graham J. C. Underwood

Within intertidal sediments, much of the dissolved organic carbon (DOC) consists of carbohydrate-rich extracellular polymeric substances (EPS) produced by microphytobenthic biofilms. EPS are an important source of carbon and energy for aerobic and anaerobic microorganisms owing to burial of microphytobenthos and downward transport of their exudates. We established slurries of estuarine biofilms to determine the fate of organic carbon and EPS fractions, differing in size and complexity, under oxic and anoxic conditions. DOC and hot-water-extracted organic matter (predominately diatom chrysolaminarin) were utilised rapidly at similar rates in both conditions. Concentrations of insoluble, high-molecular-weight EPS were unchanged in oxic microcosms, but were significantly degraded under anoxic conditions (39% degradation by day 25). Methanogenesis and sulphate reduction were major anaerobic processes in the anoxic slurries, and 16S rRNA gene pyrosequencing revealed that Desulfobacteraceae (relative sequence abundance increased from 1.9% to 12.2%) and Desulfobulbaceae (increased from 1.5% to 4.3%) were the main sulphate reducers, whilst Clostridia and Bacteroidetes were likely responsible for anaerobic hydrolysis and fermentation of EPS. We conclude that a diverse consortium of anaerobic microorganisms (including coexisting sulphate reducers and methanogens) degrade both labile and refractory microphytobenthic-derived carbon and that anaerobic degradation may be the primary fate of more structurally complex components of microphytobenthic EPS.


New Phytologist | 2013

Plasticity in the proteome of Emiliania huxleyi CCMP 1516 to extremes of light is highly targeted

Boyd A. McKew; Stephane C. Lefebvre; Eric P. Achterberg; Gergana Metodieva; Christine A. Raines; Metodi V. Metodiev; Richard J. Geider

Optimality principles are often applied in theoretical studies of microalgal ecophysiology to predict changes in allocation of resources to different metabolic pathways, and optimal acclimation is likely to involve changes in the proteome, which typically accounts for > 50% of cellular nitrogen (N). We tested the hypothesis that acclimation of the microalga Emiliania huxleyi CCMP 1516 to suboptimal vs supraoptimal light involves large changes in the proteome as cells rebalance the capacities to absorb light, fix CO2 , perform biosynthesis and resist photooxidative stress. Emiliania huxleyi was grown in nutrient-replete continuous culture at 30 (LL) and 1000 μmol photons m(-2) s(-1) (HL), and changes in the proteome were assessed by LC-MS/MS shotgun proteomics. Changes were most evident in proteins involved in the light reactions of photosynthesis; the relative abundance of photosystem I (PSI) and PSII proteins was 70% greater in LL, light-harvesting fucoxanthin-chlorophyll proteins (Lhcfs) were up to 500% greater in LL and photoprotective LI818 proteins were 300% greater in HL. The marked changes in the abundances of Lhcfs and LI818s, together with the limited plasticity in the bulk of the E. huxleyi proteome, probably reflect evolutionary pressures to provide energy to maintain metabolic capabilities in stochastic light environments encountered by this species in nature.


FEMS Microbiology Ecology | 2012

Temporal and spatial changes in the microbial bioaerosol communities in green-waste composting.

Louise J. Pankhurst; Corinne Whitby; Mark Pawlett; Lee Larcombe; Boyd A. McKew; Lewis J. Deacon; Sarah L. Morgan; Raffaella Villa; Gillian H. Drew; Sean F. Tyrrel; Simon J. T. Pollard; Frédéric Coulon

In this study, the microbial community within compost, emitted into the airstream, downwind and upwind from a composting facility was characterized and compared through phospholipid fatty acid analysis and 16S rRNA gene analysis using denaturing gradient gel electrophoresis and bar-coded pyrosequencing techniques. All methods used suggested that green-waste composting had a significant impact upon bioaerosol community composition. Daily variations of the on-site airborne community showed how specific site parameters such as compost process activity and meteorological conditions affect bioaerosol communities, although more data are required to qualify and quantify the causes for these variations. A notable feature was the dominance of Pseudomonas in downwind samples, suggesting that this genus can disperse downwind in elevated abundances. Thirty-nine phylotypes were homologous to plant or human phylotypes containing pathogens and were found within compost, on-site and downwind microbial communities. Although the significance of this finding in terms of potential health impact was beyond the scope of this study, it clearly illustrated the potential of molecular techniques to improve our understanding of the impact that green-waste composting emissions may have on the human health.


Environmental Microbiology | 2015

Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P

Boyd A. McKew; Gergana Metodieva; Christine A. Raines; Metodi V. Metodiev; Richard J. Geider

Summary Limitation of marine primary production by the availability of nitrogen or phosphorus is common. E miliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid‐latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E . huxleyi (strain 1516) responds to N and P limitation. We observed modest changes in much of the proteome despite large physiological changes (e.g. cellular biomass, C, N and P) associated with nutrient limitation of growth rate. Acclimation to nutrient limitation did however involve significant increases in the abundance of transporters for ammonium and nitrate under N limitation and for phosphate under P limitation. More notable were large increases in proteins involved in the acquisition of organic forms of N and P, including urea and amino acid/polyamine transporters and numerous C‐N hydrolases under N limitation and a large upregulation of alkaline phosphatase under P limitation. This highly targeted reorganization of the proteome towards scavenging organic forms of macronutrients gives unique insight into the molecular mechanisms that underpin how E . huxleyi has found its niche to bloom in surface waters depleted of inorganic nutrients.

Collaboration


Dive into the Boyd A. McKew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth N. Timmis

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cindy J. Smith

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joe D. Taylor

University of Westminster

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge