Thaneeya Duangchinda
Thailand National Science and Technology Development Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thaneeya Duangchinda.
Nature Medicine | 2003
Juthathip Mongkolsapaya; Wanwisa Dejnirattisai; Xiao-Ning Xu; Sirijitt Vasanawathana; Nattaya Tangthawornchaikul; Aroonrung Chairunsri; Siraporn Sawasdivorn; Thaneeya Duangchinda; Tao Dong; Sarah Rowland-Jones; Pa-thai Yenchitsomanus; Andrew J. McMichael; Prida Malasit; Gavin R. Screaton
Dengue virus presents a growing threat to public health in the developing world. Four major serotypes of dengue virus have been characterized, and epidemiological evidence shows that dengue hemorrhagic fever (DHF), the more serious manifestation of the disease, occurs more frequently upon reinfection with a second serotype. We have studied dengue virus–specific T-cell responses in Thai children. During acute infection, few dengue-responsive CD8+ T cells were recovered; most of those present showed an activated phenotype and were undergoing programmed cell death. Many dengue-specific T cells were of low affinity for the infecting virus and showed higher affinity for other, probably previously encountered strains. Profound T-cell activation and death may contribute to the systemic disturbances leading to DHF, and original antigenic sin in the T-cell responses may suppress or delay viral elimination, leading to higher viral loads and increased immunopathology.
Science | 2010
Wanwisa Dejnirattisai; Amonrat Jumnainsong; Naruthai Onsirisakul; Patricia Fitton; Sirijitt Vasanawathana; Wannee Limpitikul; Chunya Puttikhunt; Carolyn Edwards; Thaneeya Duangchinda; Sunpetchuda Supasa; Kriangkrai Chawansuntati; Prida Malasit; Juthathip Mongkolsapaya; Gavin R. Screaton
Dangerous Dengue Provocation One problem with dengue virus is that one infection does not protect against a subsequent infection; secondary infections can result in the severe immunopathology of dengue hemorrhagic fever. Dejnirattisai et al. (p. 745) derived a panel of monoclonal antibodies specific for dengue viruses. These antibodies were mainly directed against the dengue virus precursor membrane protein (prM), and most cross-reacted with all four dengue serotypes. The antibodies were not capable of fully neutralizing the virus, but instead promoted immune responses over a wide range of concentrations. During virus production and virion assembly, maturation of prm is often incomplete, and, consequently, a major part of the hosts natural antibody response recognizes a component that is present in variable numbers on the virion. Thus, rather than resulting in complete neutralization, the antibody response promotes virus infection of cells that carry receptors for antibodies. Variable maturation of a dengue viral antigen results in incomplete neutralization and promotes secondary pathology. Dengue virus co-circulates as four serotypes, and sequential infections with more than one serotype are common. One hypothesis for the increased severity seen in secondary infections is antibody-dependent enhancement (ADE) leading to increased replication in Fc receptor–bearing cells. In this study, we have generated a panel of human monoclonal antibodies to dengue virus. Antibodies to the structural precursor-membrane protein (prM) form a major component of the response. These antibodies are highly cross-reactive among the dengue virus serotypes and, even at high concentrations, do not neutralize infection but potently promote ADE. We propose that the partial cleavage of prM from the viral surface reduces the density of antigen available for viral neutralization, leaving dengue viruses susceptible to ADE by antibody to prM, a finding that has implications for future vaccine design.
Nature Immunology | 2016
Wanwisa Dejnirattisai; Piyada Supasa; Wiyada Wongwiwat; Alexander Rouvinski; Giovanna Barba-Spaeth; Thaneeya Duangchinda; Anavaj Sakuntabhai; Van-Mai Cao-Lormeau; Prida Malasit; Félix A. Rey; Juthathip Mongkolsapaya; Gavin R. Screaton
Zika virus (ZIKV) was discovered in 1947 and was thought to lead to relatively mild disease. The recent explosive outbreak of ZIKV in South America has led to widespread concern, with reports of neurological sequelae ranging from Guillain Barré syndrome to microcephaly. ZIKV infection has occurred in areas previously exposed to dengue virus (DENV), a flavivirus closely related to ZIKV. Here we investigated the serological cross-reaction between the two viruses. Plasma immune to DENV showed substantial cross-reaction to ZIKV and was able to drive antibody-dependent enhancement (ADE) of ZIKV infection. Using a panel of human monoclonal antibodies (mAbs) to DENV, we showed that most antibodies that reacted to DENV envelope protein also reacted to ZIKV. Antibodies to linear epitopes, including the immunodominant fusion-loop epitope, were able to bind ZIKV but were unable to neutralize the virus and instead promoted ADE. Our data indicate that immunity to DENV might drive greater ZIKV replication and have clear implications for disease pathogenesis and future vaccine programs for ZIKV and DENV.
Nature Immunology | 2015
Wanwisa Dejnirattisai; Wiyada Wongwiwat; Sunpetchuda Supasa; Xiaokang Zhang; Xinghong Dai; Alexander Rouvinski; Amonrat Jumnainsong; Carolyn Edwards; Nguyen Than Ha Quyen; Thaneeya Duangchinda; Jonathan M. Grimes; Wen-Yang Tsai; Chih-Yun Lai; Wei-Kung Wang; Prida Malasit; Jeremy Farrar; Cameron P. Simmons; Z. Hong Zhou; Félix A. Rey; Juthathip Mongkolsapaya; Gavin R. Screaton
Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Thaneeya Duangchinda; Wanwisa Dejnirattisai; Sirijit Vasanawathana; Wannee Limpitikul; Nattaya Tangthawornchaikul; Prida Malasit; Juthathip Mongkolsapaya; Gavin R. Screaton
Dengue infections are increasing at an alarming rate in many tropical and subtropical countries, where epidemics can put health care systems under extreme pressure. The more severe infections lead to dengue hemorrhagic fever (DHF), which can be life threatening. A variety of viral and host factors have been associated with the severity of dengue infections. Because secondary dengue infection is more commonly associated with DHF than primary infections, the acquired immune response to dengue, both B cells and T cells have been implicated. In this study, we set out to study T-cell responses across the entire dengue virus proteome and to see whether these were related to disease severity in a cohort of dengue-infected children from Thailand. Robust responses were observed in most infected individuals against most viral proteins. Responses to NS3 were the most frequent, and there was a very strong association between the magnitude of the response and disease severity. Furthermore, in DHF, cytokine-high CD107a-negative cells predominated.
Journal of Immunology | 2008
Wanwisa Dejnirattisai; Thaneeya Duangchinda; Chen-Lung Steve Lin; Sirijitt Vasanawathana; Meleri Jones; Michael Jacobs; Prida Malasit; Xiao-Ning Xu; Gavin R. Screaton; Juthathip Mongkolsapaya
Severe dengue virus (DV) infections can cause the life-threatening condition dengue hemorrhagic fever, which is characterized by a severe plasma leak, thrombocytopenia, hemorrhage, and, in severe cases, circulatory collapse and death. There is now much evidence that pre-existing immunity to DV can enhance disease when an individual becomes infected on a second or sequential occasion. It has been shown that in contrast to infected dendritic cells (DC), noninfected bystander DC underwent maturation in dengue infection. In this study, we show that TNF-α and type I IFN contribute to the maturation of bystander DC, whereas the inhibition of DV-infected DC maturation can be overcome by activated T cells. Furthermore, IFN-γ-inducible chemokines, CXCL9, 10, and 11 produced by infected DC are greatly amplified in the presence of DV-specific T cells. The chemokine secretion is also enhanced in coculture of HUVEC with either DV-infected DC or activated T cells. Finally, we found a close correlation between the serum level of these three chemokines and disease severity.
Journal of Virological Methods | 2003
Chunya Puttikhunt; Watchara Kasinrerk; Supa Srisa-ad; Thaneeya Duangchinda; Waraporn Silakate; Seangdeun Moonsom; Nopporn Sittisombut; Prida Malasit
Monoclonal antibodies against dengue NS1 protein were generated following immunization of mice with plasmid DNA encoding the transmembrane form of NS1 from dengue serotype 2 virus. A mammalian expression vector, pDisplay, was engineered to direct cell surface expression of dengue NS1 and tested for transient expression in COS cells. Two mice were immunized intramuscularly with six doses of 100 microg of plasmid at 2-week intervals; one mouse received a booster of live virus prior to the last plasmid injection. Both mice showed antibody responses against dengue antigens in dot enzyme immunoassay. Following fusion, hybridomas were screened with dot enzyme immunoassay against all four dengue serotypes. Specificity to the NS1 protein was confirmed by western blot analysis. Among five anti-dengue NS1 monoclonal antibodies generated, two clones were serotype 2 specific, two clones reacted with all four serotypes and the last also reacted with Japanese encephalitis virus. Reactivity against native or denatured forms of NS1 revealed three clones with reactivity to linear epitopes and two clones recognizing conformational epitopes. Such diverse specificity of anti-dengue NS1 monoclonal antibodies indicates that DNA immunization, especially with the combination of virus boosting, is an efficient way of producing monoclonal antibodies against viral protein. This has opened up a possibility of producing monoclonal antibodies to rare viral proteins that are difficult to isolate or purify.
Journal of Immunology | 2012
Claire M. Midgley; Aleksandra Flanagan; Hai Bac Tran; Wanwisa Dejnirattisai; Kriangkrai Chawansuntati; Amonrat Jumnainsong; Wiyada Wongwiwat; Thaneeya Duangchinda; Juthathip Mongkolsapaya; Jonathan M. Grimes; Gavin R. Screaton
Dengue virus infections are still increasing at an alarming rate in tropical and subtropical countries, underlying the need for a dengue vaccine. Although it is relatively easy to generate Ab responses to dengue virus, low avidity or low concentrations of Ab may enhance infection of FcR-bearing cells with clinical impact, posing a challenge to vaccine production. In this article, we report the characterization of a mAb, 2H12, which is cross-reactive to all four serotypes in the dengue virus group. Crystal structures of 2H12-Fab in complex with domain III of the envelope protein from three dengue serotypes have been determined. 2H12 binds to the highly conserved AB loop of domain III of the envelope protein that is poorly accessible in the mature virion. 2H12 neutralization varied between dengue serotypes and strains; in particular, dengue serotype 2 was not neutralized. Because the 2H12-binding epitope was conserved, this variation in neutralization highlights differences between dengue serotypes and suggests that significant conformational changes in the virus must take place for Ab binding. Surprisingly, 2H12 facilitated little or no enhancement of infection. These data provide a structural basis for understanding Ab neutralization and enhancement of infection, which is crucial for the development of future dengue vaccines.
Journal of Virological Methods | 2001
Rungtawan Sriburi; Poonsook Keelapang; Thaneeya Duangchinda; Sumalee Pruksakorn; Niwat Maneekarn; Prida Malasit; Nopporn Sittisombut
Procedures for cloning entire dengue serotype 2 virus genome in the multiple cloning site of a commercially available high copy number plasmid are described. The 10.7 kb viral RNA genome was reverse transcribed, amplified as three overlapping DNA fragments and successively ligated into pBluescript II KS, which contains the colE1 origin of replication. When propagated at room temperature (20-25 degrees C) under low level of antibiotic selection, the full-length recombinant plasmid was stable upon serial passages in two common Escherichia coli strains employed. Under the same culture conditions the whole dengue cDNA sequence was transferred successfully to another high copy number plasmid, pGem 3Z. Following in vitro transcription and lipofectin-mediated transfection, capped RNA transcripts derived from the plasmid initiated virus replication in C6/36 mosquito cells and BHK-21 cells within 3-4 days of transfection. Upon subsequent expansion in C6/36 cells, dengue viruses derived from the first- and eighth-plasmid passages achieved similar titers as the parent virus. They were also indistinguishable from the parent virus by the criteria of replication kinetics in mosquito and mammalian cell lines, and size and reactivity of selected viral proteins as detected with polyclonal and monoclonal antibodies. The cloning scheme and resultant recombinant plasmids based on high copy number cloning vectors allows greater flexibility in manipulation of dengue viral genome when compared with previous attempts employing low-copy number counterparts.
PLOS Neglected Tropical Diseases | 2014
Ponpan Matangkasombut; Wilawan Chan-in; Anunya Opasawaschai; Pisut Pongchaikul; Nattaya Tangthawornchaikul; Sirijitt Vasanawathana; Wannee Limpitikul; Prida Malasit; Thaneeya Duangchinda; Gavin R. Screaton; Juthathip Mongkolsapaya
Background Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their role in human dengue virus infection is not known. We hypothesized that iNKT cells play a role in human dengue infection. Methods Blood samples from a well-characterized cohort of children with DF, DHF, in comparison to non-dengue febrile illness (OFI) and healthy controls at various time points were studied. iNKT cells activation were analyzed by the expression of CD69 by flow cytometry. Their cytokine production was then analyzed after α-GalCer stimulation. Further, the CD1d expression on monocytes, and CD69 expression on conventional T cells were measured. Results iNKT cells were activated during acute dengue infection. The level of iNKT cell activation associates with the disease severity. Furthermore, these iNKT cells had altered functional response to subsequent ex vivo stimulation with α-GalCer. Moreover, during acute dengue infection, monocytic CD1d expression was also upregulated and conventional T cells also became activated. Conclusion iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human. Targeting iNKT cells and CD1d serve as a potential therapeutic strategy for severe dengue infection in the future.
Collaboration
Dive into the Thaneeya Duangchinda's collaboration.
Thailand National Science and Technology Development Agency
View shared research outputsThailand National Science and Technology Development Agency
View shared research outputs