Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodore J. Morgan is active.

Publication


Featured researches published by Theodore J. Morgan.


Heredity | 2006

Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster

Theodore J. Morgan; Trudy F. C. Mackay

For insects, temperature is a major environmental variable that can influence an individuals behavioral activities and fitness. Drosophila melanogaster is a cosmopolitan species that has had great success in adapting to and colonizing diverse thermal niches. This adaptation and colonization has resulted in complex patterns of genetic variation in thermotolerance phenotypes in nature. Although extensive work has been conducted documenting patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie this ecologically and evolutionarily important genetic variation. To begin to understand and identify the genes controlling thermotolerance phenotypes, we have used a mapping population of recombinant inbred (RI) lines to map quantitative trait loci (QTL) that affect variation in both heat- and cold-stress resistance. The mapping population was derived from a cross between two lines of D. melanogaster (Oregon-R and 2b) that were not selected for thermotolerance phenotypes, but exhibit significant genetic divergence for both phenotypes. Using a design in which each RI line was backcrossed to both parental lines, we mapped seven QTL affecting thermotolerance on the second and third chromosomes. Three of the QTL influence cold-stress resistance and four affect heat-stress resistance. Most of the QTL were trait or sex specific, suggesting that overlapping but generally unique genetic architectures underlie resistance to low- and high-temperature extremes. Each QTL explained between 5 and 14% of the genetic variance among lines, and degrees of dominance ranged from completely additive to partial dominance. Potential thermotolerance candidate loci contained within our QTL regions are identified and discussed.


Genome Biology | 2007

Quantitative genomics of locomotor behavior in Drosophila melanogaster

Katherine W. Jordan; Mary Anna Carbone; Akihiko Yamamoto; Theodore J. Morgan; Trudy F. C. Mackay

BackgroundLocomotion is an integral component of most animal behaviors, and many human health problems are associated with locomotor deficits. Locomotor behavior is a complex trait, with population variation attributable to many interacting loci with small effects that are sensitive to environmental conditions. However, the genetic basis of this complex behavior is largely uncharacterized.ResultsWe quantified locomotor behavior of Drosophila melanogaster in a large population of inbred lines derived from a single natural population, and derived replicated selection lines with different levels of locomotion. Estimates of broad-sense and narrow-sense heritabilities were 0.52 and 0.16, respectively, indicating substantial non-additive genetic variance for locomotor behavior. We used whole genome expression analysis to identify 1,790 probe sets with different expression levels between the selection lines when pooled across replicates, at a false discovery rate of 0.001. The transcriptional responses to selection for locomotor, aggressive and mating behavior from the same base population were highly overlapping, but the magnitude of the expression differences between selection lines for increased and decreased levels of behavior was uncorrelated. We assessed the locomotor behavior of ten mutations in candidate genes with altered transcript abundance between selection lines, and identified seven novel genes affecting this trait.ConclusionExpression profiling of genetically divergent lines is an effective strategy for identifying genes affecting complex behaviors, and reveals that a large number of pleiotropic genes exhibit correlated transcriptional responses to multiple behaviors.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Constraints, independence, and evolution of thermal plasticity: Probing genetic architecture of long- and short-term thermal acclimation

Alison R. Gerken; Olivia C. Eller; Daniel A. Hahn; Theodore J. Morgan

Significance Mitigating thermal stress through evolutionary adaptation or physiological plasticity is critical for species’ persistence in changing climates. Sparse knowledge of genetic and physiological architectures of thermal plasticity hampers our ability to predict organismal resilience to climate change. Understanding the independence of short- and long-term plasticity and constraints of basal thermotolerance on plasticity is important for understanding responses to climate change. We show heritable genetic variation for basal cold tolerance and plasticity in a midlatitude Drosophila melanogaster population. High long-term plasticity predicted high short-term plasticity, and basal cold tolerance constrained both plasticity measures. There was no overlap in SNPs associated with either plasticity type. Overlapping molecular function of SNPs suggests shared physiology between long- and short-term plasticity, despite distinct genetic architectures. Seasonal and daily thermal variation can limit species distributions because of physiological tolerances. Low temperatures are particularly challenging for ectotherms, which use both basal thermotolerance and acclimation, an adaptive plastic response, to mitigate thermal stress. Both basal thermotolerance and acclimation are thought to be important for local adaptation and persistence in the face of climate change. However, the evolutionary independence of basal and plastic tolerances remains unclear. Acclimation can occur over longer (seasonal) or shorter (hours to days) time scales, and the degree of mechanistic overlap is unresolved. Using a midlatitude population of Drosophila melanogaster, we show substantial heritable variation in both short- and long-term acclimation. Rapid cold hardening (short-term plasticity) and developmental acclimation (long-term plasticity) are positively correlated, suggesting shared mechanisms. However, there are independent components of these traits, because developmentally acclimated flies respond positively to short-term acclimation. A strong negative correlation between basal cold tolerance and developmental acclimation suggests that basal cold tolerance may constrain developmental acclimation, whereas a weaker negative correlation between basal cold tolerance and short-term acclimation suggests less constraint. Using genome-wide association mapping, we show the genetic architecture of rapid cold hardening and developmental acclimation responses are nonoverlapping at the SNP and corresponding gene level. However, genes associated with each trait share functional similarities, including genes involved in apoptosis and autophagy, cytoskeletal and membrane structural components, and ion binding and transport. These results indicate substantial opportunity for short-term and long-term acclimation responses to evolve separately from each other and for short-term acclimation to evolve separately from basal thermotolerance.


Molecular Ecology | 2011

Natural selection drives clinal life history patterns in the perennial sunflower species, Helianthus maximiliani

Takeshi Kawakami; Theodore J. Morgan; Jesse B. Nippert; Troy W. Ocheltree; Rose Keith; Preeti Dhakal; Mark C. Ungerer

In plants, ecologically important life history traits often display clinal patterns of population divergence. Such patterns can provide strong evidence for spatially varying selection across environmental gradients but also may result from nonselective processes, such as genetic drift, population bottlenecks and spatially restricted gene flow. Comparison of population differentiation in quantitative traits (measured as QST) with neutral molecular markers (measured as FST) provides a useful tool for understanding the relative importance of adaptive and nonadaptive processes in the formation and maintenance of clinal variation. Here, we demonstrate the existence of geographic variation in key life history traits in the diploid perennial sunflower species Helianthus maximiliani across a broad latitudinal transect in North America. Strong population differentiation was found for days to flowering, growth rate and multiple size‐related traits. Differentiation in these traits greatly exceeds neutral predictions, as determined both by partial Mantel tests and by comparisons of global QST values with theoretical FST distributions. These findings indicate that clinal variation in these life history traits likely results from local adaptation driven by spatially heterogeneous environments.


Evolution | 2014

Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster

Caroline M. Williams; Miki Watanabe; Mario Rosario Guarracino; Maria Brigida Ferraro; Arthur S. Edison; Theodore J. Morgan; Arezue Boroujerdi; Daniel A. Hahn

When ectotherms are exposed to low temperatures, they enter a cold‐induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill‐coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using nuclear magnetic resonance (NMR) spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold‐induced perturbations. The metabolites of cold‐hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations.


Genetics | 2006

High-Resolution Mapping of Quantitative Trait Loci Affecting Increased Life Span in Drosophila melanogaster

Rhonda H. Wilson; Theodore J. Morgan; Trudy F. C. Mackay

Limited life span and senescence are near-universal characteristics of eukaryotic organisms, controlled by many interacting quantitative trait loci (QTL) with individually small effects, whose expression is sensitive to the environment. Analyses of mutations in model organisms have shown that genes affecting stress resistance and metabolism affect life span across diverse taxa. However, there is considerable segregating variation for life span in nature, and relatively little is known about the genetic basis of this variation. Replicated lines of Drosophila that have evolved increased longevity as a correlated response to selection for postponed senescence are valuable resources for identifying QTL affecting naturally occurring variation in life span. Here, we used deficiency complementation mapping to identify at least 11 QTL on chromosome 3 that affect variation in life span between five old (O) lines selected for postponed senescence and their five base (B) population control lines. Most QTL were sex specific, and all but one affected multiple O lines. The latter observation is consistent with alleles at intermediate frequency in the base population contributing to the response to selection for postponed senescence. The QTL were mapped with high resolution and contained from 12 to 170 positional candidate genes.


Genetics Research | 2010

Genetic variation in senescence marker protein-30 is associated with natural variation in cold tolerance in Drosophila

Katie J. Clowers; Richard F. Lyman; Trudy F. C. Mackay; Theodore J. Morgan

A comprehensive understanding of the genetic basis of phenotypic adaptation in nature requires the identification of the functional allelic variation underlying adaptive phenotypes. The manner in which organisms respond to temperature extremes is an adaptation in many species. In the current study, we investigate the role of molecular variation in senescence marker protein-30 (Smp-30) on natural phenotypic variation in cold tolerance in Drosophila melanogaster. Smp-30 encodes a product that is thought to be involved in the regulation of Ca2+ ion homeostasis and has been shown previously to be differentially expressed in response to cold stress. Thus, we sought to assess whether molecular variation in Smp-30 was associated with natural phenotypic variation in cold tolerance in a panel of naturally derived inbred lines from a population in Raleigh, North Carolina. We identified four non-coding polymorphisms that were strongly associated with natural phenotypic variation in cold tolerance. Interestingly, two polymorphisms that were in close proximity to one another (2 bp apart) exhibited opposite phenotypic effects. Consistent with the maintenance of a pair of antagonistically acting polymorphisms, tests of molecular evolution identified a significant excess of maintained variation in this region, suggesting balancing selection is acting to maintain this variation. These results suggest that multiple mutations in non-coding regions can have significant effects on phenotypic variation in adaptive traits within natural populations, and that balancing selection can maintain polymorphisms with opposite effects on phenotypic variation.


Molecular Ecology | 2014

Ecotypes of an ecologically dominant prairie grass (Andropogon gerardii) exhibit genetic divergence across the U.S. Midwest grasslands' environmental gradient.

Miranda M. Gray; Paul St. Amand; Nora M. Bello; Matthew Galliart; Mary Knapp; Karen A. Garrett; Theodore J. Morgan; Sara G. Baer; Brian R. Maricle; Eduard D. Akhunov; Loretta C. Johnson

Big bluestem (Andropogon gerardii) is an ecologically dominant grass with wide distribution across the environmental gradient of U.S. Midwest grasslands. This system offers an ideal natural laboratory to study population divergence and adaptation in spatially varying climates. Objectives were to: (i) characterize neutral genetic diversity and structure within and among three regional ecotypes derived from 11 prairies across the U.S. Midwest environmental gradient, (ii) distinguish between the relative roles of isolation by distance (IBD) vs. isolation by environment (IBE) on ecotype divergence, (iii) identify outlier loci under selection and (iv) assess the association between outlier loci and climate. Using two primer sets, we genotyped 378 plants at 384 polymorphic AFLP loci across regional ecotypes from central and eastern Kansas and Illinois. Neighbour‐joining tree and PCoA revealed strong genetic differentiation between Kansas and Illinois ecotypes, which was better explained by IBE than IBD. We found high genetic variability within prairies (80%) and even fragmented Illinois prairies, surprisingly, contained high within‐prairie genetic diversity (92%). Using Bayenv2, 14 top‐ranked outlier loci among ecotypes were associated with temperature and precipitation variables. Six of seven BayeScanFST outliers were in common with Bayenv2 outliers. High genetic diversity may enable big bluestem populations to better withstand changing climates; however, population divergence supports the use of local ecotypes in grassland restoration. Knowledge of genetic variation in this ecological dominant and other grassland species will be critical to understanding grassland response and restoration challenges in the face of a changing climate.


Genetica | 2011

Genetic variation in heat-stress tolerance among South American Drosophila populations

Lindsey C. Fallis; Juan J. Fanara; Theodore J. Morgan

Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature and how they will react to novel changes in environmental temperature is important for understanding the adaptive capacity of populations and to predict future trajectories of evolutionary change. The organismal response to heat has been identified as an important environmental variable for insects that can dramatically influence life history characters and geographic range. In the current study we surveyed the amount of variation in heat tolerance among Drosophila melanogaster populations collected at diverse sites along a latitudinal gradient in Argentina (24°–38°S). This is the first study to quantify heat tolerance in South American populations and our work demonstrates that most of the populations surveyed have abundant within-population phenotypic variation, while still exhibiting significant variation among populations. The one exception was the most heat tolerant population that comes from a climate exhibiting the warmest annual mean temperature. All together our results suggest there is abundant genetic variation for heat-tolerance phenotypes within and among natural populations of Drosophila and this variation has likely been shaped by environmental temperature.


Journal of Evolutionary Biology | 2014

Developmental thermal plasticity among Drosophila melanogaster populations.

L. C. Fallis; J. J. Fanara; Theodore J. Morgan

Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organisms behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill‐coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.

Collaboration


Dive into the Theodore J. Morgan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trudy F. C. Mackay

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

David B. Allison

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian R. Maricle

Fort Hays State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge