Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thierry Steimer is active.

Publication


Featured researches published by Thierry Steimer.


The EMBO Journal | 1999

Enhanced hippocampal long‐term potentiation and learning by increased neuronal expression of tissue‐type plasminogen activator in transgenic mice

Rime Madani; Sophie Hulo; Nicolas Toni; Hala Madani; Thierry Steimer; Dominique Muller; Jean-Dominique Vassalli

Adult cortical neurons can produce tissue‐type plasminogen activator (tPA), an extracellular protease that plays a critical role in fibrinolysis and tissue remodelling processes. There is growing evidence that extracellular proteolysis may be involved in synaptic plasticity, axonal remodelling and neurotoxicity in the adult central nervous system. Here we show that transgenic mice overexpressing tPA in post‐natal neurons have increased and prolonged hippocampal long‐term potentiation (LTP), and improved performance in spatial orientation learning tasks. Extracellular proteolysis catalysed by tPA may facilitate synaptic micro‐remodelling, and thereby play a role in activity‐dependent neuronal plasticity and learning.


Stress | 2003

Divergent stress responses and coping styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects.

Thierry Steimer; Peter Driscoll

The Swiss sublines of Roman high-(RHA/Verh) and low-(RLA/Verh) avoidance rats have been genetically selected for good vs. poor performance in two-way active avoidance since 1972. RLA/Verh rats show increased stress responses (e.g. freezing behaviour, ACTH, corticosterone and prolactin secretion) and adopt a more passive (or reactive) coping style when confronted with a novel environment. In the open field, elevated plus-maze, black/white box test, and in a new light/dark open field test, RLA/Verh rats appear to be more anxious than their RHA/Verh counterparts. Anxiety may result from their particular psychophysiological profile, i.e. increased emotionality combined with a passive coping style. In contrast, RHA/Verh rats are less responsive to stress, they show little anxiety in novel situations and tend to be impulsive and novelty (sensation) seekers. Some behavioural differences are already noticeable shortly after birth, but the full pattern appears to stabilize only after puberty. Gene-environment interactions are critical in establishing this pattern. The data reviewed indicate that the differences between RHA/Verh and RLA/Verh rats probably result from a complex interaction among divergent anxiety/emotionality characteristics, differences in locomotor activity and novelty/reward seeking, as well as active vs. passive coping styles. It is proposed further that these divergent personality types are to be found not only in other selective breeding programs but in the form of individual differences in most populations of rats used for this type of research.


Behavior Genetics | 1997

Neuroendocrine Correlates of Emotional Reactivity and Coping in Male Rats from the Roman High (RHA/Verh)- and Low (RLA/Verh)-Avoidance Lines

Thierry Steimer; Susanne la Fleur; Pierre Schulz

The Roman high (RHA/Verh)-and low (RLA/Verh)-avoidance rats, originally selected and bred for rapid vs. poor acquisition of a two-way active avoidance response, differ in emotional reactivity and sensitivity to stressors in various other test situations. These behavioral differences are associated with particular neuroendocrine and neurochemical characteristics. The aim of this short review is to present data currently available on the neuroendocrine profiles of RHA/Verh and RLA/Verh rats, together with more recent findings which suggest that differences in peripheral and central hormonal responses, and in hormone action on the brain, may be closely related to emotional reactivity and coping ability. Although genetic factors certainly play a major role, there is also evidence that epigenetic factors, e.g., early environmental influences, can modulate the phenotypic expression of the basic behavioral and neuroendocrine traits characterizing these lines. These psychogenetically selected lines can therefore be used as a model to investigate interactions between genes and the environment in determining each individuals sensitivity to stress and coping abilities (“vulnerability” model). This model may prove particularly useful for studies on the etiology and pathophysiology of anxiety and affective disorders and their neuroendocrine correlates.


CNS Drugs | 2009

Neurobiology of Circadian Systems

Pierre Schulz; Thierry Steimer

Time is a dimension tightly associated with the biology of living species. There are cycles of varied lengths in biological activities, from very short (ultradian) rhythms to rhythms with a period of approximately one day (circadian) and rhythms with longer cycles, of a week, a month, a season, or even longer. These rhythms are generated by endogenous biological clocks, i.e. timekeeping structures, rather than being passive reactions to external fluctuations. In mammals, the suprachiasmatic nucleus (SCN) is the major pacemaker. The pineal gland, which secretes melatonin, is the major pacemaker in other phyla. There also exist biological clocks generating circadian rhythms in peripheral tissues, for example the liver. A series of clock genes generates the rhythm through positive and negative feedback effect of proteins on their own synthesis, and this system oscillates with a circadian period. External factors serve as indicators of the astronomical (solar) time and are called zeitgebers, literally time-givers. Light is the major zeitgeber, which resets daily the SCN circadian clock. In the absence of zeitgebers, the circadian rhythm is said to be free running; it has a period that differs from 24 hours. The SCN, together with peripheral clocks, enables a time-related homeostasis, which can become disorganized in its regulation by external factors (light, social activities, food intake), in the coordination and relative phase position of rhythms, or in other ways. Disturbances of rhythms are found in everyday life (jet lag, shift work), in sleep disorders, and in several psychiatric disorders including affective disorders.As almost all physiological and behavioural functions in humans occur on a rhythmic basis, the possibility that advances, delays or desynchronization of circadian rhythms might participate in neurological and psychiatric disorders has been a theme of research. In affective disorders, a decreased circadian amplitude of several rhythms as well as a phase advance or delay have been described, leading to hypotheses about changes in biological clocks themselves or in their sensitivity to environmental factors, such as light or social cues. Molecular genetics studies have suggested the involvement of circadian clock genes, but no tight association has yet been found. Agomelatine is an antidepressant, agonist at melatonergic MT1, MT2 receptors and antagonist at 5-HT2C receptors, and is able to phase advance circadian rhythms in humans. The fact that non-pharmacological (light therapy, sleep deprivation, rhythm therapy) and pharmacological (lithium, antidepressants, agomelatine) therapies of affective disorders influence circadian rhythms indicates that biological clocks play a role in the pathophysiology of these disorders.


Journal of Separation Science | 2010

On-line desorption of dried blood spots coupled to hydrophilic interaction/reversed-phase LC/MS/MS system for the simultaneous analysis of drugs and their polar metabolites

Aurélien Thomas; Julien Déglon; Thierry Steimer; Patrice Mangin; Youssef Daali; Christian Staub

An assay for the simultaneous analysis of pharmaceutical compounds and their metabolites from micro-whole blood samples (i.e. 5 microL) was developed using an on-line dried blood spot (on-line DBS) device coupled with hydrophilic interaction/reversed-phase (HILIC/RP) LC/MS/MS. Filter paper is directly integrated to the LC device using a homemade inox desorption cell. Without any sample pretreatment, analytes are desorbed from the paper towards an automated system of valves linking a zwitterionic-HILIC column to an RP C18 column. In the same run, the polar fraction is separated by the zwitterionic-HILIC column while the non-polar fraction is eluted on the RP C18. Both fractions are detected by IT-MS operating in full scan mode for the survey scan and in product ion mode for the dependant scan using an ESI source. The procedure was evaluated by the simultaneous qualitative analysis of four probes and their relative phase I and II metabolites spiked in whole blood. In addition, the method was successfully applied to the in vivo monitoring of buprenorphine metabolism after the administration of an intraperitoneal injection of 30 mg/kg on adult female Wistar rat.


Neuroendocrinology | 1995

Corticotropin-releasing factor and vasopressin mRNA levels in roman high- and low-avoidance rats: response to open-field exposure

Jean-Michel Aubry; Viktor Bartanusz; Peter Driscoll; Pierre Schulz; Thierry Steimer; Jozsef Zoltan Kiss

Roman high- (RHA) and low- (RLA) avoidance rats are selected and bred for rapid versus non-acquisition of two-way, active avoidance behavior in a shuttle box. They also show a number of other behavioral differences which appear to be essentially related to emotional factors, the RLA rats being emotionally more sensitive. The ACTH secretory response to stressors is also augmented in RLA rats. We thus raised the question whether the expression of corticotropin-releasing factor (CRF) and vasopressin (VP), two neurohormones exerting a synergistic action on ACTH release from corticotropic cells, is different in the two strains. Steady-state mRNA levels were examined in the parvicellular neurons of the paraventricular nucleus under basal conditions and 4 h after a single 8-min exposure to an open-field stressor. In situ hybridization histochemistry with 35S-labeled oligonucleotide probes was followed by quantitative cell by cell autoradiography. When basal CRF and VP mRNA levels were compared in the two lines, we found that the RLA rats had a significantly higher VP-labeling density than the RHA rats. No difference was found for CRF mRNA. During open-field exposure, we observed behavioral differences paralleled by elevated corticosterone compatible with an increased emotional response in RLA rats. Open-field exposure produced a significant increase in CRF but not VP mRNA in both RHA and RLA rats (by 43 and 57%, respectively). These results suggest that differences in basal VP expression in CRF neurons may participate in the mechanisms underlying the hyperactivity of the hypothalamo-pituitary-adrenal (HPA) axis in the emotionally more sensitive RLA rats.(ABSTRACT TRUNCATED AT 250 WORDS)


Neuroendocrinology | 2004

Mineralo- and Glucocorticoid Receptor mRNAs Are Differently Regulated by Corticosterone in the Rat Hippocampus and Anterior Pituitary

Mirza E. Hügin-Flores; Thierry Steimer; Michel L. Aubert; P. Schulz

In most cell lines and animal tissues, glucocorticoid receptors undergo downregulation after exposure to corticosterone. However, corticosterone treatment has not shown a consistent effect on mineralocorticoid (MR) and glucocorticoid receptors (GR) in the hippocampus, and it has been rarely assessed in the anterior pituitary. In this study we investigated dose-dependent effects of corticosterone on MR and GR mRNAs in the hippocampus and anterior pituitary. Adrenalectomized rats substituted with corticosterone in drinking fluid were injected subcutaneously with vehicle or 1, 10, 50, 100, or 200 mg of corticosterone, and sacrificed 4 h later. In the hippocampus we found a progressive decrease in MR and GR mRNAs with increasing doses of corticosterone. This was significant with 50 and 100 mg corticosterone for MR mRNA and with 10–200 mg corticosterone for GR mRNA at plasma corticosterone levels above 30 µg/dl. The anterior pituitary did not show significant changes at any dose. A time-course with 2 mg of corticosterone (non-response dose range at 4 h) revealed a significant decrease in MR and GR mRNAs in the hippocampus 8 h after the subcutaneous injection. In the anterior pituitary both mRNAs showed an increase that was significant 24 h after injection for MR and from 8 to 24 h for GR. In the hippocampus, adrenalectomy (absence of corticosterone) induced a significant increase in MR and GR mRNAs on day 3, but not on days 1, 8 and 21 after adrenalectomy. In the anterior pituitary there were no significant changes at any time after adrenalectomy. In summary, we have found an in vivo corticosterone dose- and time-dependent downregulation of MR and GR mRNAs in the hippocampus, whereas anterior pituitary MRs and GRs seem relatively insensitive to the excess or the absence of corticosterone, suggesting the lack of an autoregulatory effect in this tissue. Significant mRNA changes appearing later in time could suggest a secondary response via a glucocorticoid-induced gene product. Corticosteroid receptor downregulation in the hippocampus could prevent overstimulation or tissue damage when plasma corticosterone is high, while increased corticosteroid receptors in the anterior pituitary could buffer the excessive brain drive on the pituitary during chronic stress or pathological conditions associated with increased plasma glucocorticoids, such as depression.


Brain Research | 1989

Is the androgen-dependent increase in preoptic estradiol-17β formation due to aromatase induction?

Thierry Steimer; J.B. Hutchinson

Aromatization of testosterone in the preoptic area of the male ring dove is required for the expression of specific estrogen-sensitive sexual behavior. Estradiol metabolism and/or binding of the aromatization product(s) to the preoptic estrogen receptors (ER) could interfere with the apparent increase in estradiol formation that occurs after androgen administration to castrated males. Therefore, we have re-examined the induction mechanism using a direct in vitro assay of aromatase activity. Since levels of aromatase activity and enzyme kinetics were similar irrespective of the assay used, we can conclude that increased estradiol formation after androgen stimulation is mainly due to enzyme induction and that estrogen binding and/or metabolism do not interfere significantly with the induction process.


Neuroendocrinology | 1991

Brain Aromatization of Testosterone in the Male Syrian Hamster: Effects of Androgen and Photoperiod

Rosemary E. Hutchison; John B. Hutchison; Thierry Steimer; Elizabeth Steel; J.Bradley Powers; Andrea P. Walker; J. Herbert; Michael H. Hastings

Estrogen formed by aromatization of testosterone (T) is involved in the activation of sexual behavior and control of the neuroendocrine system in the male Syrian hamster. Our study examined whether daylength influences formation of estrogen in the preoptic area (POA) and other neuroendocrine areas (anterior hypothalamus, AHT, and medial amygdala, MA) which are targets for T in behaviorally active males. Estrogen formation in individual brain samples was assayed in vitro using the stereospecific production of 3H2O from (1 beta-3H) T as a measurement of aromatase activity. Serum levels of PRL, LH, FSH and T were compared with brain aromatase activity. Groups of intact, castrated and T-treated (chronic silastic T implants) male hamsters, previously selected on behavioral criteria as being sexually active, were maintained on long (16:8LD) or short (8:16LD) daylength for 16 weeks. Two further groups of males either intact or castrated and T-treated were shifted after 7 weeks from the long photoperiod to 12:12LD. POA, AHT and MA areas of sexually active males contained active aromatase systems which converted 3H-T to estrogens. Enzyme activity differed between the areas (POA, MA greater than AHT). Aromatase activity was low in medial septum and cerebral samples. Castration, which reduced serum T to undetectable levels and elevated LH and FSH, had no effect on preoptic aromatase activity. Although estrogen formation in POA did not differ between 8:16LD and 16:8LD males, castration reduced aromatase activity in AHT of both short- and long-day groups. Aromatase activity in AHT was also significantly reduced in photo-inhibited 12:12LD intact males. There was no analogous decrease in 5 alpha-reductase or 17 beta-hydroxysteroid dehydrogenase (HSD) activity, indicating a specific effect on the aromatase. The effect of photoperiod on aromatase activity was not reversed by T treatment. Therefore, photoinhibition acts in part through the effects of reduced T levels on the anterior hypothalamus, but it also acts independently of circulating T. Our results suggest that both androgen and photoperiod may regulate the AHT aromatase system and that this occurs by different mechanisms. The more active aromatase system in POA is insensitive to both castration and photoperiod. Behavioral deficits in short-day males are not due to changes in the preoptic aromatase system, but may be related to changes in aromatase activity within AHT. We conclude that there is a difference in the regulation of two locally active aromatase systems within the preoptic-anterior hypothalamic complex of the male hamster.


The International Journal of Neuropsychopharmacology | 2013

Innately low D2 receptor availability is associated with high novelty-seeking and enhanced behavioural sensitization to amphetamine.

Benjamin B. Tournier; Thierry Steimer; Philippe Millet; Marcelle Moulin-Sallanon; Philippe Vallet; Vicente Ibáñez; Nathalie Ginovart

High novelty-seeking has been related to an increased risk for developing addiction, but the neurobiological mechanism underlying this relationship is unclear. We investigated whether differences in dopamine (DA) D2/3-receptor (D2/3R) function underlie phenotypic divergence in novelty-seeking and vulnerability to addiction. Measures of D2/3R availability using the D2R-preferring antagonist [18F]Fallypride, and the D3R-preferring agonist [3H]-(+)-PHNO and of DA-related gene expression and behaviours were used to characterize DA signalling in Roman high- (RHA) and low-avoidance (RLA) rats, which respectively display high and low behavioural responsiveness both to novelty and psychostimulant exposure. When compared to RLA rats, high novelty-responding RHAs had lower levels of D2R, but not D3R, binding and mRNA in substantia nigra/ventral tegmental area (SN/VTA) and showed behavioural evidence of D2-autoreceptor subsensitivity. RHA rats also showed a higher expression of the tyrosine hydroxylase gene in SN/VTA, higher levels of extracellular DA in striatum and augmentation of the DA-releasing effects of amphetamine (Amph), suggesting hyperfunctioning of midbrain DA neurons. RHA rats also exhibited lower availabilities and functional sensitivity of D2R, but not D3R, in striatum, which were inversely correlated with individual scores of novelty-seeking, which, in turn, predicted the magnitude of Amph-induced behavioural sensitization. These results indicate that innately low levels of D2R in SN/VTA and striatum, whether they are a cause or consequence of the concomitantly observed elevated DA tone, result in a specific pattern of DA signalling that may subserve novelty-seeking and vulnerability to drug use. This suggests that D2R deficits in SN/VTA and striatum could both constitute neurochemical markers of an addiction-prone phenotype.

Collaboration


Dive into the Thierry Steimer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge