Benjamin B. Tournier
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benjamin B. Tournier.
The International Journal of Neuropsychopharmacology | 2013
Benjamin B. Tournier; Thierry Steimer; Philippe Millet; Marcelle Moulin-Sallanon; Philippe Vallet; Vicente Ibáñez; Nathalie Ginovart
High novelty-seeking has been related to an increased risk for developing addiction, but the neurobiological mechanism underlying this relationship is unclear. We investigated whether differences in dopamine (DA) D2/3-receptor (D2/3R) function underlie phenotypic divergence in novelty-seeking and vulnerability to addiction. Measures of D2/3R availability using the D2R-preferring antagonist [18F]Fallypride, and the D3R-preferring agonist [3H]-(+)-PHNO and of DA-related gene expression and behaviours were used to characterize DA signalling in Roman high- (RHA) and low-avoidance (RLA) rats, which respectively display high and low behavioural responsiveness both to novelty and psychostimulant exposure. When compared to RLA rats, high novelty-responding RHAs had lower levels of D2R, but not D3R, binding and mRNA in substantia nigra/ventral tegmental area (SN/VTA) and showed behavioural evidence of D2-autoreceptor subsensitivity. RHA rats also showed a higher expression of the tyrosine hydroxylase gene in SN/VTA, higher levels of extracellular DA in striatum and augmentation of the DA-releasing effects of amphetamine (Amph), suggesting hyperfunctioning of midbrain DA neurons. RHA rats also exhibited lower availabilities and functional sensitivity of D2R, but not D3R, in striatum, which were inversely correlated with individual scores of novelty-seeking, which, in turn, predicted the magnitude of Amph-induced behavioural sensitization. These results indicate that innately low levels of D2R in SN/VTA and striatum, whether they are a cause or consequence of the concomitantly observed elevated DA tone, result in a specific pattern of DA signalling that may subserve novelty-seeking and vulnerability to drug use. This suggests that D2R deficits in SN/VTA and striatum could both constitute neurochemical markers of an addiction-prone phenotype.
Neuropsychopharmacology | 2012
Nathalie Ginovart; Benjamin B. Tournier; Marcelle Moulin-Sallanon; Thierry Steimer; Vicente Ibáñez; Philippe Millet
Δ9-Tetrahydrocannabinol (THC), through its action on cannabinoid type-1 receptor (CB1R), is known to activate dopamine (DA) neurotransmission. Functional evidence of a direct antagonistic interaction between CB1R and DA D2-receptors (D2R) suggests that D2R may be an important target for the modulation of DA neurotransmission by THC. The current study evaluated, in rodents, the effects of chronic exposure to THC (1 mg/kg/day; 21 days) on D2R and D3R availabilities using the D2R-prefering antagonist and the D3R-preferring agonist radiotracers [18F]fallypride and [3H]-(+)-PHNO, respectively. At 24 h after the last THC dose, D2R and D3R densities were significantly increased in midbrain. In caudate/putamen (CPu), THC exposure was associated with increased densities of D2R with no change in D2R mRNA expression, whereas in nucleus accumbens (NAcc) both D3R binding and mRNA levels were upregulated. These receptor changes, which were completely reversed in CPu but only partially reversed in NAcc and midbrain at 1 week after THC cessation, correlated with an increased functionality of D2/3R in vivo, based on findings of increased locomotor suppressive effect of a presynaptic dose and enhanced locomotor activation produced by a postsynaptic dose of quinpirole. Concomitantly, the observations of a decreased gene expression of tyrosine hydroxylase in midbrain together with a blunted psychomotor response to amphetamine concurred to indicate a diminished presynaptic DA function following THC. These findings indicate that the early period following THC treatment cessation is associated with altered presynaptic D2/3R controlling DA synthesis and release in midbrain, with the concurrent development of postsynaptic D2/3R supersensitivity in NAcc and CPu. Such D2/3R neuroadaptations may contribute to the reinforcing and habit-forming properties of THC.
Nuclear Medicine and Biology | 2014
Stergios Tsartsalis; Marcelle Moulin-Sallanon; Noé Dumas; Benjamin B. Tournier; Catherine Ghezzi; Yves Charnay; Nathalie Ginovart; Philippe Millet
PURPOSE In vivo imaging of GABAA receptors is essential for the comprehension of psychiatric disorders in which the GABAergic system is implicated. Small animal SPECT provides a modality for in vivo imaging of the GABAergic system in rodents using [(123)I]Iomazenil, an antagonist of the GABAA receptor. The goal of this work is to describe and evaluate different quantitative reference tissue methods that enable reliable binding potential (BP) estimations in the rat brain to be obtained. METHODS Five male Sprague-Dawley rats were used for [(123)I]Iomazenil brain SPECT scans. Binding parameters were obtained with a one-tissue compartment model (1TC), a constrained two-tissue compartment model (2TCc), the two-step Simplified Reference Tissue Model (SRTM2), Logan graphical analysis and analysis of delayed-activity images. In addition, we employed factor analysis (FA) to deal with noise in data. RESULTS BPND obtained with SRTM2, Logan graphical analysis and delayed-activity analysis was highly correlated with BPF values obtained with 2TCc (r=0.954 and 0.945 respectively, p<0.0001). Equally significant correlations were found between values obtained with 2TCc and SRTM2 in raw and FA-denoised images (r=0.961 and 0.909 respectively, p<0.0001). Scans of at least 100min are required to obtain stable BPND values from raw images while scans of only 70min are sufficient from FA-denoised images. These images are also associated with significantly lower standard errors of 2TCc and SRTM2 BP values. CONCLUSION Reference tissue methods such as SRTM2 and Logan graphical analysis can provide equally reliable BPND values from rat brain [(123)I]Iomazenil SPECT. Acquisitions, however, can be much less time-consuming either with analysis of delayed activity obtained from a 20-minute scan 50min after tracer injection or with FA-denoising of images.
Molecular Imaging | 2014
Noé Dumas; Marcelle Moulin-Sallanon; Nathalie Ginovart; Benjamin B. Tournier; Peggy Suzanne; Thomas Cailly; Frédéric Fabis; Sylvain Rault; Yves Charnay; Philippe Millet
The pharmacokinetic properties of radiotracers are crucial for successful in vivo single-photon emission computed tomographic (SPECT) imaging. Our goal was to determine if MDR1A-deficient animals could allow better SPECT imaging outcomes than wild-type (WT) animals for a selection of serotoninergic radioligands. Thus, we compared the performances of 123I-p-MPPI, 123I-R91150, 123I-SB207710, and 123I-ADAM radioligands, for imaging of their respective targets (5-hydroxytryptamine [5-HT]1A, 5-HT2A, 5-HT4, and serotonin transporter [SERT]), in WT and Mdr1a knockout (KO) rats. With 123I-SB207710, virtually no SPECT signal was recorded in the brain of WT or KO animals. For 123I-p-MPPI, low nondisplaceable binding potentials (BPND, mean ± SD) were observed in WT (0.49 ± 0.25) and KO (0.89 ± 0.52) animals. For 123I-ADAM, modest imaging contrast was observed in WT (1.27 ± 0.02) and KO (1.31 ± 0.09) animals. For 123I-R91150, the BPND were significantly higher in Mdr1a KO (3.98 ± 0.65) animals compared to WT animals (1.22 ± 0.26). The pharmacokinetics of 123I-SB207710 and 123I-p-MPPI do not make them ideal tracers for preclinical SPECT neuroimaging. 123I-ADAM showed adequate brain uptake regardless of Mdr1a expression and appeared suitable for preclinical SPECT neuroimaging in both animal strains. The use of Mdr1a KO animals significantly improved the brain penetration of 123I-R91150, making this animal strain an interesting option when considering SPECT neuroimaging of 5-HT2A receptors in rat.The pharmacokinetic properties of radiotracers are crucial for successful in vivo single-photon emission computed tomographic (SPECT) imaging. Our goal was to determine if MDR1A-deficient animals could allow better SPECT imaging outcomes than wild-type (WT) animals for a selection of serotoninergic radioligands. Thus, we compared the performances of 123 I-p-MPPI, 123 I-R91150, 123 ISB207710, and 123 I-ADAM radioligands, for imaging of their respective targets (5-hydroxytryptamine [5-HT]1A, 5-HT2A, 5-HT4, and serotonin transporter [SERT]), in WT and Mdr1a knockout (KO) rats. With 123 I-SB207710, virtually no SPECT signal was recorded in the brain of WT or KO animals. For 123 I-p-MPPI, low nondisplaceable binding potentials (BPND, mean 6 SD) were observed in WT (0.49 6 0.25) and KO (0.89 6 0.52) animals. For 123 I-ADAM, modest imaging contrast was observed in WT (1.27 6 0.02) and KO (1.31 6 0.09) animals. For 123 I-R91150, the BPND were significantly higher in Mdr1a KO (3.98 6 0.65) animals compared to WT animals (1.22 6 0.26). The pharmacokinetics of 123 I-SB207710 and 123 I-p-MPPI do not make them ideal tracers for preclinical SPECT neuroimaging. 123 IADAM showed adequate brain uptake regardless of Mdr1a expression and appeared suitable for preclinical SPECT neuroimaging in both animal strains. The use of Mdr1a KO animals significantly improved the brain penetration of 123 I-R91150, making this animal strain an interesting option when considering SPECT neuroimaging of 5-HT2A receptors in rat.
European Neuropsychopharmacology | 2014
Benjamin B. Tournier; Nathalie Ginovart
Cannabis produces cognitive dysfunctions that resemble those of schizophrenia; yet the neurobiological substrate of this similarity remains unclear. Schizophrenia patients show deficits in prepulse inhibition (PPI) of the acoustic startle reflex (ASR), an operational measure of the information-processing abnormalities that may underlie the cognitive and positive symptoms of the disease. However, the effect of cannabis on PPI remains poorly understood, as data are often contradictory. Here, we investigated the effect of acute and repeated treatment with ∆(9)-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, on PPI in rats, and the role of dopamine D₂/₃-receptor blockade in this effect. PPI and ASR were sequentially measured after the first and the last dose of a 21-days treatment with THC (1 mg/kg/day) or vehicle and at 1-week following discontinuation of treatment. The effect of haloperidol (0.1 mg/kg) on THC-induced PPI alteration was also evaluated. Chronic, but not acute, THC treatment produced significant reductions in PPI that were normalized back to control values within one-week of THC discontinuation. The THC-induced gating deficits were observed in the absence of ASR change and were reversed by the D₂/₃-receptor antagonist haloperidol. Chronic THC exposure induced PPI disruptions that emerged only following repeated administrations, suggesting that time-dependent neuroadaptations within the DA mesolimbic system are involved in the disruptive effects of THC on sensorimotor gating. These gating deficits were transient and appeared to be dependent on an overactivity of D₂/₃-receptor-mediated dopamine signaling, highlighting a potential role for D₂/₃-receptors in the propsychotic action of THC.
NeuroImage | 2017
Stergios Tsartsalis; Benjamin B. Tournier; Karl Aoun; Selim Habiby; Diego Pandolfo; Andrea Dimiziani; Nathalie Ginovart; Philippe Millet
Purpose: Molecular imaging of the D2/3 receptor is widely used in neuropsychiatric research. Non‐displaceable binding potential (BPND) is a very popular quantitative index, defined as the product of the receptor concentration (Bavail) and the radiotracer affinity for the receptor (1/appKd). As the appKd is influenced by parameters such as the endogenous neurotransmitter dynamics, it often constitutes a confounding factor in research studies. A simplified method for absolute quantification of both these parameters would be of great interest in this context. Here, we describe the use of a partial saturation protocol that permits to produce an in vivo Scatchard plot and thus estimate Bavail and appKd separately, through a single dynamic SPECT session. To validate this approach, a multi‐injection protocol is used for the full kinetic modeling of [123I]IBZM using a 3‐tissue compartment, 7‐parameter model (3T‐7k). Finally, more “classic” BPND estimation methods are also validated against the results of the 3T‐7k. Methods: Twenty‐nine male rats were used. Binding parameters were estimated using the 3T‐7k in a multi‐injection protocol. A partial saturation protocol was applied at the region‐ and voxel‐level and results were compared to those obtained with the 3T‐7k model. The partial saturation protocol was applied after an adenovirus‐mediated D2 receptor striatal overexpression and in an amphetamine‐induced dopamine release paradigm. The Simplified Reference Tissue Model (SRTM), the Logans non‐invasive graphical analysis (LNIGA) and a simple standardized uptake ratio (SUR) method were equally applied. Results: The partial saturation experiments gave similar values as the 3T‐7k both at the regional and voxel‐level. After adenoviral‐mediated D2‐receptor overexpression, an increase in Bavail by approximately 18% was observed in the striatum. After amphetamine administration, a 16.93% decrease in Bavail (p<0.05) and a 39.12% increase (p<0.01) in appKd was observed. BPND derived from SRTM, LNIGA and SUR correlated well with the Bavail values from the 3T‐7k (r=0.84, r=0.84 and r=0.83, respectively, p<0.0001 for all correlations). Conclusion: A partial saturation protocol permits the non‐invasive and time‐efficient estimation of Bavail and appKd separately. Given the different biological phenomena that underlie these parameters, this method may be applied for the in‐depth study of the dopaminergic system in translational molecular imaging studies. It can detect the biological variations in these parameters, dissociating the variations in receptor density (Bavail) from affinity (1/appKd), which reflects the interactions of the receptor with its endogenous ligand. HIGHLIGHTSResearch suggests dissociative changes in Bavail and appKd of neuroreceptors.Currently these parameters are jointly estimated as binding potential (BP).A single‐scan non‐invasive protocol for separate estimation is proposed.Sufficient sensitivity for biological studies is validated.Endogenous transmitter level assessed through appKd estimation.
Nuclear Medicine and Biology | 2016
Stergios Tsartsalis; Benjamin B. Tournier; Trinh Huynh-Gatz; Noé Dumas; Nathalie Ginovart; Marcelle Moulin-Sallanon; Philippe Millet
INTRODUCTION Pharmacological P-glycoprotein (P-gp) inhibition with tariquidar (TQD) is considered a promising strategy for the augmentation of radiotracer brain uptake. However, a region-dependent effect may compromise the robustness of quantitative studies. For this reason, we studied the effect of a TQD pretreatment on 5-HT2A imaging with [(123)I]R91150 and compared results with those obtained in Mdr1a knock-out (KO) rats. METHODS Ex vivo autoradiography was performed in TQD (15 mg/kg) pretreated wild-type (WT-TQD), Mdr1a knock-out (KO) and untreated WT rats for Specific Binding Ratio (SBR) estimation. In vivo dynamic SPECT imaging with serial arterial blood sampling was performed in the former two groups of rats and kinetic analysis was performed with a one tissue-compartment (1TC) model and the Specific Uptake Ratio (SUR). Results were analyzed statistically using repeated measures ANOVA. RESULTS SBR values differed between WT-TQD, Mdr1a KO and WT rats in a region-dependent manner (p<0.0001). In vivo brain uptake of radiotracer did not differ between groups. Similarly, kinetic analysis provided distribution volume (V(T)) values that did not differ significantly between groups. SUR binding potential (BPND) values from both groups highly correlated with corresponding V(T) (r=0.970, p<0.0001 and r=0.962, p<0.0001, respectively). However, SUR measured over averaged images between 100 and 120 min, using cerebellum as reference region, demonstrated values that were, by average, 2.99±0.53 times higher in the WT-TQD group, with the difference between groups being region-dependent (p<0.001). In addition, coefficient of variation of the SUR BPND values across brain regions was significantly higher in the WT-TQD rats (41.25%±9.63% versus 11.13%±5.59%, p<0.0001). CONCLUSION P-gp inhibition with TQD leads to region-dependent effect in the rat brain, with probably sub-optimal effect in cerebellum. This warrants attention when it is used as a reference region for quantitative studies.
Behavioural Brain Research | 2016
Benjamin B. Tournier; Stergios Tsartsalis; Andrea Dimiziani; Philippe Millet; Nathalie Ginovart
This study examined the time-course of alterations in levels and functional sensitivities of dopamine D2/3 receptors (D2/3R) during the course and up to 6 weeks following cessation of chronic treatment with Delta(9)-Tetrahydrocannabinol (THC) in rats. THC treatment led to an increase in D2/3R levels in striatum, as assessed using [(3)H]-(+)-PHNO, that was readily observable after one week of treatment, remained stably elevated during the subsequent 2 weeks of treatment, but fully reversed within 2 weeks of THC discontinuation. THC-induced D2/3R alterations were more pronounced and longer lasting in the dopamine cell body regions of the midbrain, wherein [(3)H]-(+)-PHNO binding was still elevated at 2 weeks but back to control values at 6 weeks after THC cessation. Parallel analyses of the psychomotor effects of pre- and post-synaptic doses of quinpirole also showed a pattern of D2/3R functional supersensitivity indicative of more rapid subsidence in striatum than in midbrain following drug cessation. These results indicate that chronic THC is associated with a biochemical and functional sensitization of D2/3R signaling, that these responses show a region-specific temporal pattern and are fully reversible following drug discontinuation. These results suggest that an increased post-synaptic D2/3R function and a decreased DA presynaptic signaling, mediated by increased D2/3R autoinhibition, may predominate during distinct phases of withdrawal and may contribute both to the mechanisms leading to relapse and to cannabinoid withdrawal symptoms. The different rates of normalization of D2/3R function in striatum and midbrain may be critical information for the development of new pharmacotherapies for cannabis dependence.
Molecular Imaging | 2015
No e Dumas; Marcelle Moulin-Sallanon; Pascal Fender; Benjamin B. Tournier; Nathalie Ginovart; Yves Charnay; Philippe Millet
Our goal was to identify suitable image quantification methods to image 5-hydroxytryptamine2A (5-HT2A) receptors in vivo in Mdr1a knockout (KO) rats (i.e., P-glycoprotein KO) using 123I-R91150 single-photon emission computed tomography (SPECT). The 123I-R91150 binding parameters estimated with different reference tissue models (simplified reference tissue model [SRTM], Logan reference tissue model, and tissue ratio [TR] method) were compared to the estimates obtained with a comprehensive three-tissue/seven-parameter (3T/7k)-based model. The SRTM and Logan reference tissue model estimates of 5-HT2A receptor (5-HT2AR) nondisplaceable binding potential (BPND) correlated well with the absolute receptor density measured with the 3T/7k gold standard (r > .89). Quantification of 5-HT2AR using the Logan reference tissue model required at least 90 minutes of scanning, whereas the SRTM required at least 110 minutes. The TR method estimates were also highly correlated to the 5-HT2AR density (r > .91) and only required a single 20-minute scan between 100 and 120 minutes postinjection. However, a systematic overestimation of the BPND values was observed. The Logan reference tissue method is more convenient than the SRTM for the quantification of 5-HT2AR in Mdr1a KO rats using 123I-R91150 SPECT. The TR method is an interesting and simple alternative, despite its bias, as it still provides a valid index of 5-HT2AR density.Our goal was to identify suitable image quantification methods to image 5-hydroxytryptamine2A (5-HT2A) receptors in vivo in Mdr1a knockout (KO) rats (i.e., P-glycoprotein KO) using 123I-R91150 single-photon emission computed tomography (SPECT). The 123I-R91150 binding parameters estimated with different reference tissue models (simplified reference tissue model [SRTM], Logan reference tissue model, and tissue ratio [TR] method) were compared to the estimates obtained with a comprehensive three-tissue/seven-parameter (3T/7k)-based model. The SRTM and Logan reference tissue model estimates of 5-HT2A receptor (5-HT2AR) nondisplaceable binding potential (BPND) correlated well with the absolute receptor density measured with the 3T/7k gold standard (r > .89). Quantification of 5-HT2AR using the Logan reference tissue model required at least 90 minutes of scanning, whereas the SRTM required at least 110 minutes. The TR method estimates were also highly correlated to the 5-HT2AR density (r > .91) and only required a single 20-minute scan between 100 and 120 minutes postinjection. However, a systematic overestimation of the BPND values was observed. The Logan reference tissue method is more convenient than the SRTM for the quantification of 5-HT2AR in Mdr1a KO rats using 123I-R91150 SPECT. The TR method is an interesting and simple alternative, despite its bias, as it still provides a valid index of 5-HT2AR density.
Molecular Imaging | 2014
Stergios Tsartsalis; Marcelle Moulin-Sallanon; Noé Dumas; Benjamin B. Tournier; Nathalie Ginovart; Philippe Millet
Defluorination of [18F]fallypride and accumulation of 18F in skull and glands leads to the contamination of brain structures with spillover activity due to partial volume effects, leading to considerable errors in binding potential estimations. Here we propose a modification of the simplified reference tissue model (SRTM) to take into account the contribution of skull activity to the radioactivity kinetic pattern in cerebellum and target regions. It consists of the introduction of an additional parameter for each volume of interest (sT) and one for the cerebellum (sR), corresponding to the fraction of skull activity contaminating these structures. Using five rat positron emission tomography experiments, we applied the modified SRTM (SRTMc), which resulted in excellent fits. As a relative means of comparison of results, we applied factor analysis (FA) to decompose dynamic data into images corresponding to brain and skull activity. With the skull factor images, we estimated the “true” sT and sR values, ultimately permitting us to fix the sR value. Parameters obtained with the SRTMc were closely correlated with values obtained from FA-corrected data. In conclusion, we propose an efficient method for reliable quantification of dopamine D2/3 receptors with single-injection [18F]fallypride scans that is potentially applicable to human studies where 18F skull accumulation compromises binding parameter estimation.