Thomas Basché
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Basché.
Macromolecular Rapid Communications | 2009
Frédéric Laquai; Young-Seo Park; Jang-Joo Kim; Thomas Basché
In this review, we discuss investigations of electronic excitation energy transfer in conjugated organic materials at the bulk and single molecule level and applications of energy transfer in fluorescent and phosphorescent organic light emitting devices. A brief overview of common descriptions of energy transfer mechanisms is given followed by a discussion of some basic photophysics of conjugated materials including the generation of excited states and their subsequent decay through various channels. In particular, various examples of bimolecular excited state annihilation processes are presented. Energy transfer studies at the single molecule level provide a new tool to study electronic couplings in simple donor/acceptor dyads and conjugated polymers. Finally, energy transfer in organic electronic devices is discussed with particular emphasis on triplet emitter doped OLEDs and blends for white light emission.
Journal of Applied Physics | 2004
Jialong Zhao; Jingying Zhang; Chaoyang Jiang; Jolanta Bohnenberger; Thomas Basché; Alf Mews
Electro- and photoluminescence spectra of the CdSe∕ZnS core-shell quantum dots (QDs) covered by various organic ligands and incorporated into multilayered light-emitting diodes (LEDs) were recorded by a confocal optical microscope. The QDs were dispersed in a hole transporting material, N,N’-Diphenyl-N,N’-bis(3-methylphenyl)-1,1’-biphenyl-4,4’-diamine (TPD), to investigate the LED performance at different QD concentrations and the effect of different surface modifications on the isolated QDs. No wavelength shift was observed in the electroluminescence spectra from the QD LEDs with or without the TPD. The peak energies of the electro- and photoluminescence showed only small spectral shifts (several nanometer) for the diluted QDs and no dependence on the QD-concentration, surface ligands, or conductive polymers that were used. This suggests that the relative peak shifts are related to the different filling processes in the CdSe QDs under photo excitation and electric injection, rather than to the “chemical”...
Journal of the American Chemical Society | 2009
Victor V. Matylitsky; Lars Dworak; Vladimir V. Breus; Thomas Basché; Josef Wachtveitl
Ultrafast ET with a characteristic time constant of approximately 70 fs between CdSe QDs (mean radii of 1.4 nm) photoexcited in the lowest 1S electron state (lambda(exc) = 539 nm), and the molecular electron acceptor MV(2+) adsorbed on the QD surface was observed. The photophysics of such a system was investigated by time-resolved transient absorbance spectroscopy in the UV-visible spectral region. Our studies for the coupled system as a function of excitation intensity at lambda(exc) = 387 nm show that the ET processes compete efficiently with Auger recombination in CdSe QDs and at least 4 e-h pairs can be separated by ET to the electron acceptor MV(2+).
Journal of the American Chemical Society | 2008
Ting Ren; Prasun K. Mandal; Wolfgang Erker; Zhihong Liu; Yuri Avlasevich; Larissa Puhl; Klaus Müllen; Thomas Basché
Hybrid systems consisting of core/shell semiconductor quantum dots (QDs) and organic rylene dyes have been prepared and characterized. Complex formation is mediated by bidentate carboxylate moieties covalently linked to the dye molecules. The complexes were very stable with respect to time (at least months), dilution (sub nM), and precipitation. After preparation in organic solvent, complexes could be easily transferred into water. The strong quenching of QD emission by the dye molecules (transfer efficiencies up to 95%) was satisfactorily modeled by an FRET process. Single complexes immobilized in thin polymer films were imaged by confocal fluorescence microscopy.
Angewandte Chemie | 1999
Thomas Gensch; Johan Hofkens; Andreas Heirmann; Kenji Tsuda; Wendy Verheijen; Tom Vosch; Thomas Christ; Thomas Basché; Klaus Müllen; Frans C. De Schryver
The differences in the fluorescence behavior of a polyphenylene dendrimer with eight peryleneimides chromophores (1) and a single hexaphenylperyleneimide chromophore have been investigated at a single-molecule level through the combination of ultrasensitive fluorescence detection and microscopy.
Angewandte Chemie | 2001
Thomas Christ; Florian Kulzer; Patrice Bordat; Thomas Basché
The photooxidation of single dye molecules can be followed by confocal fluorescence microscopy. The self-sensitized reaction with singlet oxygen leads to a suite of products, which may be differentiated spectrally. Tentative structures for certain photoproducts have been obtained from quantum-chemical calculations.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Markus Lippitz; Wolfgang Erker; Heinz Decker; K. E. Van Holde; Thomas Basché
We have examined the feasibility of observing single protein molecules by means of their intrinsic tryptophan emission after two-photon excitation. A respiratory protein from spiders, the 24-meric hemocyanin, containing 148 tryptophans, was studied in its native state under almost in vivo conditions. In this specific case, the intensity of the tryptophan emission signals the oxygen load, allowing one to investigate molecular cooperativity. As a system with even higher tryptophan content, we also investigated latex spheres covered with the protein avidin, resulting in 340 tryptophans per sphere. The ratio of the fluorescence quantum efficiency to the bleaching efficiency was found to vary between 2 and 180 after two-photon excitation for tryptophan free in buffer solution, in hemocyanin, and in avidin-coated spheres. In the case of hemocyanin, this ratio leads to about four photons detected before photobleaching. Although this number is quite small, the diffusion of individual protein molecules could be detected by fluorescence correlation spectroscopy. In avidin-coated spheres, the tryptophans exhibit a higher photostability, so that even imaging of single spheres becomes possible. As an unexpected result of the measurements, it was discovered that the population of the oxygenated state of hemocyanin can be changed by means of a one-photon process with the same laser source that monitors this population in a two-photon process.
Journal of Luminescence | 1995
J. Tittel; R. Kettner; Thomas Basché; Christoph Bräuchle; Heribert Quante; Klaus Müllen
Abstract We investigated the spectra of single tetra-tert-butylterrylene (TBT) molecules in the amorphous matrix poly(isobutylene) (PIB). The distribution of line widths of TBT in PIB was measured and compared to that of TBT in poly(ethylene). The fluorescence intensity autocorrelation function as well as the two-point frequency autocorrelation function were determined for different single TBT molecules. Logarithmic-like decays of the fluorescence autocorrelation function could be reproduced by assuming a 1 R fluctuation rate distribution for the two-level-tunnelling systems.
Journal of Chemical Physics | 2008
G. Hinze; R. Metivier; Fabian Nolde; Klaus Müllen; Thomas Basché
Electronic excitation energy transfer has been studied by single molecule spectroscopy in donor/acceptor dyads composed of a perylenediimide donor and a terrylenediimide acceptor linked by oligo(phenylene) bridges of two different lengths. For the shorter bridge (three phenylene units) energy is transferred almost quantitatively from the donor to the acceptor, while for the longer bridge (seven phenylene units) energy transfer is less efficient as indicated by the occurrence of donor and acceptor emission. To determine energy transfer rates and efficiencies at the single molecule level, several methods have been employed. These comprise time-correlated single photon counting techniques at room temperature and optical linewidth measurements at low temperature (1.4 K). For both types of measurement we obtain broad distributions of the rate constants of energy transfer. These distributions are simulated in the framework of Forster theory by properly taking into account static disorder and the flexibility of the dyads, as both effects can substantially contribute to the distributions of energy transfer times. The rate constants of energy transfer obtained from the calculated distributions are smaller on average than those extracted from the experimental distributions, whereby the discrepancy is larger for the shorter bridge. Furthermore, by plotting the experimentally determined transfer rates against the individual spectral overlaps, approximately linear dependencies are found being indicative of a Forster-type contribution to the energy transfer. For a given single molecule such a linear dependence could be followed by spectral diffusion induced fluctuations of the spectral overlap. The discrepancies between measured energy transfer rates and rates calculated by Forster theory are briefly discussed in light of recent results of quantum chemical calculations, which indicate that a bridge-mediated contribution is mainly responsible for the deviations from Forster theory. The availability of the inhomogeneous distributions of donor and acceptor electronic transition frequencies allows for comparing the energy transfer process at liquid helium and room temperature for the same set of molecules via simple simulations. It is found that on average the energy transfer is by a factor of approximately 3 faster at room temperature, which is due to an increase of spectral overlap.
Chemistry: A European Journal | 1999
P. Schlichting; Bettina Duchscherer; Georg Seisenberger; Thomas Basché; Christoph Bräuchle; Klaus Müllen
A functionalized dialkylperylene and a modified terrylenetetracarboxdiimide (TTCDI) were joined by a hexanediyl spacer. The resulting bichromophoric molecule 1 (R = 4-tert-butylphenoxy) is a suitable model system for donor–acceptor energy transfer studies at the single-molecule level.