Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Hardcastle is active.

Publication


Featured researches published by Thomas J. Hardcastle.


BMC Bioinformatics | 2010

baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data

Thomas J. Hardcastle; Krystyna A. Kelly

BackgroundHigh throughput sequencing has become an important technology for studying expression levels in many types of genomic, and particularly transcriptomic, data. One key way of analysing such data is to look for elements of the data which display particular patterns of differential expression in order to take these forward for further analysis and validation.ResultsWe propose a framework for defining patterns of differential expression and develop a novel algorithm, baySeq, which uses an empirical Bayes approach to detect these patterns of differential expression within a set of sequencing samples. The method assumes a negative binomial distribution for the data and derives an empirically determined prior distribution from the entire dataset. We examine the performance of the method on real and simulated data.ConclusionsOur method performs at least as well, and often better, than existing methods for analyses of pairwise differential expression in both real and simulated data. When we compare methods for the analysis of data from experimental designs involving multiple sample groups, our method again shows substantial gains in performance. We believe that this approach thus represents an important step forward for the analysis of count data from sequencing experiments.


The Plant Cell | 2010

The Arabidopsis RNA-Directed DNA Methylation Argonautes Functionally Diverge Based on Their Expression and Interaction with Target Loci

Ericka R. Havecker; Laura M. Wallbridge; Thomas J. Hardcastle; Maxwell S. Bush; Krystyna A. Kelly; Ruth M. Dunn; Frank Schwach; John H. Doonan; David C. Baulcombe

This study examines the basis of functional divergence amongst the closely related Arabidopsis AGO4, AGO6, and AGO9 proteins. Using associated small RNAs, these proteins direct DNA epigenetic modifications in a tissue-specific manner. Argonaute (AGO) effectors of RNA silencing bind small RNA (sRNA) molecules and mediate mRNA cleavage, translational repression, or epigenetic DNA modification. In many organisms, these targeting mechanisms are devolved to different products of AGO multigene families. To investigate the basis of AGO functional diversification, we characterized three closely related Arabidopsis thaliana AGOs (AGO4, AGO6, and AGO9) implicated in RNA-directed DNA methylation. All three AGOs bound 5′ adenosine 24-nucleotide sRNAs, but each exhibited different preferences for sRNAs from different heterochromatin-associated loci. This difference was reduced when AGO6 and AGO9 were expressed from the AGO4 promoter, indicating that the functional diversification was partially due to differential expression of the corresponding genes. However, the AGO4-directed pattern of sRNA accumulation and DNA methylation was not fully recapitulated with AGO6 or AGO9 expressed from the AGO4 promoter. Here, we show that sRNA length and 5′ nucleotide do not account for the observed functional diversification of these AGOs. Instead, the selectivity of sRNA binding is determined by the coincident expression of the AGO and sRNA-generating loci, and epigenetic modification is influenced by interactions between the AGO protein and the different target loci. These findings highlight the importance of tissue specificity and AGO-associated proteins in influencing epigenetic modifications.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Chromosomal instability determines taxane response

Charles Swanton; Barbara Nicke; Marion Schuett; Aron Charles Eklund; Charlotte K.Y. Ng; Qiyuan Li; Thomas J. Hardcastle; Alvin J.X. Lee; Rajat Roy; Philip East; Maik Kschischo; David Endesfelder; Paul Wylie; Se Nyun Kim; Jie-Guang Chen; Michael Howell; Thomas Ried; Jens K. Habermann; Gert Auer; James D. Brenton; Zoltan Szallasi; Julian Downward

Microtubule-stabilizing (MTS) agents, such as taxanes, are important chemotherapeutics with a poorly understood mechanism of action. We identified a set of genes repressed in multiple cell lines in response to MTS agents and observed that these genes are overexpressed in tumors exhibiting chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells. Overexpression of these “CIN-survival” genes is associated with poor outcome in estrogen receptor–positive breast cancer and occurs frequently in basal-like and Her2-positive cases. In diploid cells, but not in chromosomally unstable cells, paclitaxel causes repression of CIN-survival genes, followed by cell death. In the OV01 ovarian cancer clinical trial, a high level of CIN was associated with taxane resistance but carboplatin sensitivity, indicating that CIN may determine MTS response in vivo. Thus, pretherapeutic assessment of CIN may optimize treatment stratification and clinical trial design using these agents.


Nature Genetics | 2013

Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters

Kyuha Choi; Xiaohui Zhao; Krystyna A. Kelly; Oliver Venn; James D. Higgins; Nataliya E. Yelina; Thomas J. Hardcastle; Piotr A. Ziolkowski; Gregory P. Copenhaver; F. Chris H. Franklin; Gil McVean; Ian R. Henderson

PRDM9 directs human meiotic crossover hot spots to intergenic sequence motifs, whereas budding yeast hot spots overlap regions of low nucleosome density (LND) in gene promoters. To investigate hot spots in plants, which lack PRDM9, we used coalescent analysis of genetic variation in Arabidopsis thaliana. Crossovers increased toward gene promoters and terminators, and hot spots were associated with active chromatin modifications, including H2A.Z, histone H3 Lys4 trimethylation (H3K4me3), LND and low DNA methylation. Hot spot–enriched A-rich and CTT-repeat DNA motifs occurred upstream and downstream, respectively, of transcriptional start sites. Crossovers were asymmetric around promoters and were most frequent over CTT-repeat motifs and H2A.Z nucleosomes. Pollen typing, segregation and cytogenetic analysis showed decreased numbers of crossovers in the arp6 H2A.Z deposition mutant at multiple scales. During meiosis, H2A.Z forms overlapping chromosomal foci with the DMC1 and RAD51 recombinases. As arp6 reduced the number of DMC1 or RAD51 foci, H2A.Z may promote the formation or processing of meiotic DNA double-strand breaks. We propose that gene chromatin ancestrally designates hot spots within eukaryotes and PRDM9 is a derived state within vertebrates.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Mobile Small RNAs Regulate Genome-Wide DNA Methylation

Mathew G. Lewsey; Thomas J. Hardcastle; Charles W. Melnyk; Attila Molnar; Adrian Valli; Mark A. Urich; Joseph R. Nery; David C. Baulcombe; Joseph R. Ecker

Significance Small RNAs (sRNAs) of 24 nt are associated with transcriptional gene silencing by targeting DNA methylation to complementary sequences. We demonstrated previously that sRNAs move from shoot to root, where they regulate DNA methylation of three endogenous transposable elements (TEs). However, the full extent of root DNA methylation dependent on mobile sRNAs was unknown. We demonstrate that DNA methylation at thousands of sites depends upon mobile sRNAs. These sites are associated with TE superfamilies found in gene-rich regions of the genome, which lose methylation selectively in an sRNA-deficient mutant. If the TEs were able to reactivate, they could cause genome instability and altered gene expression patterns, with negative effects on the plant. Consequently, mobile sRNAs may defend against these TEs. RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21–24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession.


The EMBO Journal | 2009

Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA

Ingela Djupedal; Isabelle C Kos-Braun; Rebecca A. Mosher; Niklas Söderholm; Femke Simmer; Thomas J. Hardcastle; Aurélie Fender; Nadja Heidrich; Alexander Kagansky; Elizabeth H. Bayne; E. Gerhart H. Wagner; David C. Baulcombe; Robin C. Allshire; Karl Ekwall

The formation of heterochromatin at the centromeres in fission yeast depends on transcription of the outer repeats. These transcripts are processed into siRNAs that target homologous loci for heterochromatin formation. Here, high throughput sequencing of small RNA provides a comprehensive analysis of centromere‐derived small RNAs. We found that the centromeric small RNAs are Dcr1 dependent, carry 5′‐monophosphates and are associated with Ago1. The majority of centromeric small RNAs originate from two remarkably well‐conserved sequences that are present in all centromeres. The high degree of similarity suggests that this non‐coding sequence in itself may be of importance. Consistent with this, secondary structure‐probing experiments indicate that this centromeric RNA is partially double‐stranded and is processed by Dicer in vitro. We further demonstrate the existence of small centromeric RNA in rdp1Δ cells. Our data suggest a pathway for siRNA generation that is distinct from the well‐documented model involving RITS/RDRC. We propose that primary transcripts fold into hairpin‐like structures that may be processed by Dcr1 into siRNAs, and that these siRNAs may initiate heterochromatin formation independent of RDRC activity.


Genes & Development | 2015

DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis.

Nataliya E. Yelina; Christophe Lambing; Thomas J. Hardcastle; Xiaohui Zhao; Bruno Santos; Ian R. Henderson

During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes.


Genome Biology and Evolution | 2011

Getting a Full Dose? Reconsidering Sex Chromosome Dosage Compensation in the Silkworm, Bombyx mori

James R. Walters; Thomas J. Hardcastle

Dosage compensation—equalizing gene expression levels in response to differences in gene dose or copy number—is classically considered to play a critical role in the evolution of heteromorphic sex chromosomes. As the X and Y diverge through degradation and gene loss on the Y (or the W in female-heterogametic ZW taxa), it is expected that dosage compensation will evolve to correct for sex-specific differences in gene dose. Although this is observed in some organisms, recent genome-wide expression studies in other taxa have revealed striking exceptions. In particular, reports that both birds and the silkworm moth (Bombyx mori) lack dosage compensation have spurred speculation that this is the rule for all female-heterogametic taxa. Here, we revisit the issue of dosage compensation in silkworm by replicating and extending the previous analysis. Contrary to previous reports, our efforts reveal a pattern typically associated with dosage compensated taxa: the global male:female expression ratio does not differ between the Z and autosomes. We believe the previous report of unequal male:female ratios on the Z reflects artifacts of microarray normalization in conjunction with not testing a major assumption that the male:female global expression ratio was unbiased for autosomal loci. However, we also find that the global Z chromosome expression is significantly reduced relative to autosomes, a pattern not expected in dosage compensated taxa. This combination of male:female parity with an overall reduction in expression for sex-linked loci is not consistent with the prevailing evolutionary theory of sex chromosome evolution and dosage compensation.


RNA | 2015

The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis

Betty Y.-W. Chung; Thomas J. Hardcastle; Joshua D. Jones; Nerea Irigoyen; Andrew E. Firth; David C. Baulcombe; Ian Brierley

Ribosome profiling is a technique that permits genome-wide, quantitative analysis of translation and has found broad application in recent years. Here we describe a modified profiling protocol and software package designed to benefit more broadly the translation community in terms of simplicity and utility. The protocol, applicable to diverse organisms, including organelles, is based largely on previously published profiling methodologies, but uses duplex-specific nuclease (DSN) as a convenient, species-independent way to reduce rRNA contamination. We show that DSN-based depletion compares favorably with other commonly used rRNA depletion strategies and introduces little bias. The profiling protocol typically produces high levels of triplet periodicity, facilitating the detection of coding sequences, including upstream, downstream, and overlapping open reading frames (ORFs) and an alternative ribosome conformation evident during termination of protein synthesis. In addition, we provide a software package that presents a set of methods for parsing ribosomal profiling data from multiple samples, aligning reads to coding sequences, inferring alternative ORFs, and plotting average and transcript-specific aspects of the data. Methods are also provided for extracting the data in a form suitable for differential analysis of translation and translational efficiency.


Bioinformatics | 2012

Identifying small interfering RNA loci from high-throughput sequencing data

Thomas J. Hardcastle; Krystyna A. Kelly; David C. Baulcombe

MOTIVATION Small interfering RNAs (siRNAs) are produced from much longer sequences of double-stranded RNA precursors through cleavage by Dicer or a Dicer-like protein. These small RNAs play a key role in genetic and epigenetic regulation; however, a full understanding of the mechanisms by which they operate depends on the characterization of the precursors from which they are derived. RESULTS High-throughput sequencing of small RNA populations allows the locations of the double-stranded RNA precursors to be inferred. We have developed methods to analyse small RNA sequencing data from multiple biological sources, taking into account replicate information, to identify robust sets of siRNA precursors. Our methods show good performance on both a set of small RNA sequencing data in Arabidopsis thaliana and simulated datasets. AVAILABILITY Our methods are available as the Bioconductor (www.bioconductor.org) package segmentSeq (version 1.5.6 and above).

Collaboration


Dive into the Thomas J. Hardcastle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaohui Zhao

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Kyuha Choi

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr A. Ziolkowski

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge