Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas M. Brocher is active.

Publication


Featured researches published by Thomas M. Brocher.


Bulletin of the Seismological Society of America | 2005

Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust

Thomas M. Brocher

A compilation of compressional-wave ( V p) and shear-wave ( V s) velocities and densities for a wide variety of common lithologies is used to define new nonlinear, multivalued, and quantitative relations between these properties for the Earths crust. Wireline borehole logs, vertical seismic profiles, laboratory measurements, and seismic tomography models provide a diverse dataset for deriving empirical relations between crustal V p and V s. The proposed V s as a function of V p relations fit V s and V p borehole logs in Quaternary alluvium and Salinian granites as well as laboratory measurements over a 7-km/sec-wide range in V p. The relations derived here are very close to those used to develop a regional 3D velocity model for southern California, based on pre-1970 data, and thus provide support for that model. These data, and these relations, show a rapid increase in V s as V p increases to 3.5 km/sec leading to higher shear-wave velocities in young sedimentary deposits than commonly assumed. These relations, appropriate for active continental margins where earthquakes are prone to occur, suggests that amplification of strong ground motions by shallow geologic deposits may not be as large as predicted by some earlier models.


Science | 1994

Crustal architecture of the cascadia forearc.

Anne M. Trehu; I. Asudeh; Thomas M. Brocher; James H. Luetgert; Walter D. Mooney; Yosio Nakamura

Seismic profiling data indicate that the thickness of an accreted oceanic terrane of Paleocene and early Eocene age, which forms the basement of much of the forearc beneath western Oregon and Washington, varies by approximately a factor of 4 along the strike of the Cascadia subduction zone. Beneath the Oregon Coast Range, the accreted terrane is 25 to 35 kilometers thick, whereas offshore Vancouver Island it is about 6 kilometers thick. These variations are correlated with variations in arc magmatism, forearc seismicity, and long-term forearc deformation. It is suggested that the strength of the forearc crust increases as the thickness of the accreted terrane increases and that the geometry of the seaward edge of this terrane influences deformation within the subduction complex and controls the amount of sediment that is deeply subducted.


Geology | 2003

Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin

Thomas M. Brocher; Tom Parsons; Anne M. Trehu; Catherine Mary Snelson; Michael A. Fisher

Petrologic models suggest that dehydration and metamorphism of subducting slabs release water that serpentinizes the overlying forearc mantle. To test these models, we use the results of controlled-source seismic surveys and earthquake tomography to map the upper mantle along the Cascadia margin forearc. We find anomalously low upper-mantle velocities and/or weak wide-angle reflections from the top of the upper mantle in a narrow region along the margin, compatible with recent teleseismic studies and indicative of a serpentinized upper mantle. The existence of a hydrated forearc upper-mantle wedge in Cascadia has important geological and geophysical implications. For example, shearing within the upper mantle, inferred from seismic reflectivity and consistent with its serpentinite rheology, may occur during aseismic slow slip events on the megathrust. In addition, progressive dehydration of the hydrated mantle wedge south of the Mendocino triple junction may enhance the effects of a slab gap during the evolution of the California margin.


Journal of Geophysical Research | 1994

Mapping the megathrust beneath the northern Gulf of Alaska using wide‐angle seismic data

Thomas M. Brocher; Gary S. Fuis; Michael A. Fisher; George Plafker; Michael J. Moses; J. John Taber; Nikolas I. Christensen

In the northern Gulf of Alaska and Prince William Sound, we have used wide-angle seismic reflection/refraction profiles, earthquake studies, and laboratory measurements of physical properties to determine the geometry of the Prince William and Yakutat terranes, the Aleutian megathrust, and the subducting Pacific plate. In this complex region, the Yakutat terrane is underthrust beneath the Prince William terrane, and both terranes are interpreted to be underlain by the Pacific plate. Wide-angle seismic reflection/refraction profiles recorded along five seismic lines are used to unravel this terrane geometry. Modeled velocities in the upper crust of the Prince William terrane (to 18 km depth) agree closely with laboratory velocity measurements of Orca Group phyllites and quartzofeldspathic graywackes (the chief components of the Prince William terrane) to hydrostatic pressures as high as 600 MPa (6 kbar). A landward dipping reflector at depths of 16–24 km is interpreted as the base of the Prince William terrane. This reflector corresponds to the top of the Wadati-Benioff zone seismicity and is interpreted as the megathrust. Immediately beneath the megathrust is a 4-km-thick 6.9-km/s refractor, which we infer to be the source of a prominent magnetic anomaly and which is interpreted by us and previous workers to be gabbro in Eocene age oceanic crust of the underthrust Yakutat terrane. Wide-angle seismic data, magnetic anomaly data, and tectonic reconstructions indicate that the Yakutat terrane has been underthrust beneath the Prince William terrane for at least a few hundred kilometers. Wide-angle seismic data are consistent with a 9° to 10° landward dip of the subducting Pacific plate beneath the outer shelf and slope, distinctly different from the inferred average 3° to 4° dip of the overlying 6.9-km/s refractor and the Wadati-Benioff seismic zone beneath the inner shelf. Our preferred interpretation of the geophysical data is that one composite plate, composed of the Pacific plate of a fairly uniform thickness and the Yakutat plate of varying thickness, is subducting beneath southern Alaska.


Geology | 2005

Subduction-zone magnetic anomalies and implications for hydrated forearc mantle

Richard J. Blakely; Thomas M. Brocher; Ray E. Wells

Continental mantle in subduction zones is hydrated by release of water from the underlying oceanic plate. Magnetite is a significant byproduct of mantle hydration, and forearc mantle, cooled by subduction, should contribute to long-wavelength magnetic anomalies above subduction zones. We test this hypothesis with a quantitative model of the Cascadia convergent margin, based on gravity and aeromagnetic anomalies and constrained by seismic velocities, and find that hydrated mantle explains an important disparity in potential-field anomalies of Cascadia. A comparison with aeromagnetic data, thermal models, and earthquakes of Cascadia, Japan, and southern Alaska suggests that magnetic mantle may be common in forearc settings and thus magnetic anomalies may be useful in mapping hydrated mantle in convergent margins worldwide.


Geology | 2008

Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting

Gary S. Fuis; Thomas E. Moore; George Plafker; Thomas M. Brocher; Michael A. Fisher; Walter D. Mooney; Warren J. Nokleberg; Robert A. Page; Bruce C. Beaudoin; Nikolas I. Christensen; Alan R. Levander; William J. Lutter; Richard W. Saltus; Natalia A. Ruppert

We investigate the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic under-plating. In the 1980s and early 1990s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted as remnants of the extinct Kula (or Resurrection) plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by large-scale duplex structures that overlie a tectonic wedge of North Slope crust and mantle. There, the Moho has been depressed to nearly 50 km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula (or Resurrection) plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two regions include flat-slab subduction and an orogenic-float model. In the Neogene, the tectonics of the accreting Yakutat terrane have differed across a newly interpreted tear in the subducting Pacific oceanic lithosphere. East of the tear, Pacific oceanic lithosphere subducts steeply and alone beneath the Wrangell volcanoes, because the overlying Yakutat terrane has been left behind as underplated rocks beneath the rising St. Elias Range, in the coastal region. West of the tear, the Yakutat terrane and Pacific oceanic lithosphere subduct together at a gentle angle, and this thickened package inhibits volcanism.


Geology | 1990

Seismic anisotropy due to preferred mineral orientation observed in shallow crustal rocks in southern Alaska

Thomas M. Brocher; Nikolas I. Christensen

Laboratory velocity measurements and structural field relations explain the observation of a significant seismic anisotropy within highly foliated rocks in southern Alaska. The orientation of the principal compressive stress indicates that this anisotropy is not related to extensive dilatancy, but can be satisfactorily explained by the foliation of the metasedimentary rocks. Laboratory measurements indicate a significant anisotropy within these rocks even at pressures well above those thought to close microcracks. These observations document that anisotropy related to preferred mineral orientation may be widespread in continental rocks. Thus, pervasive foliation can play a more important role in causing anisotropy than dilatancy, and inferences of principal stress orientations solely from anisotropy may be erroneous.


Journal of Geophysical Research | 1996

Crustal structure of a transform plate boundary: San Francisco Bay and the central California continental margin

W. Steven Holbrook; Thomas M. Brocher; Uri S. ten Brink; John A. Hole

Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at 15–18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75 ± 0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4–6.6 km/s and 6.9–7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the “6-s reflector” of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40–50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0–6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma.


Geology | 2004

Holocene fault scarps near Tacoma, Washington, USA

Brian L. Sherrod; Thomas M. Brocher; Craig S. Weaver; Robert C. Bucknam; Richard J. Blakely; Harvey M. Kelsey; Alan R. Nelson; Ralph A. Haugerud

Airborne laser mapping confirms that Holocene active faults traverse the Puget Sound metropolitan area, northwestern continental United States. The mapping, which detects forest-floor relief of as little as 15 cm, reveals scarps along geophysical lineaments that separate areas of Holocene uplift and subsidence. Along one such line of scarps, we found that a fault warped the ground surface between A.D. 770 and 1160. This reverse fault, which projects through Tacoma, Washington, bounds the southern and western sides of the Seattle uplift. The northern flank of the Seattle uplift is bounded by a reverse fault beneath Seattle that broke in A.D. 900–930. Observations of tectonic scarps along the Tacoma fault demonstrate that active faulting with associated surface rupture and ground motions pose a significant hazard in the Puget Sound region.


Science | 1994

Seismic Evidence for a Lower-Crustal Detachment Beneath San Francisco Bay, California

Thomas M. Brocher; Jill McCarthy; Patrick E. Hart; W.S. Holbrook; Kevin P. Furlong; Thomas V. McEvilly; John A. Hole; Simon L. Klemperer

Results from the San Francisco Bay area seismic imaging experiment (BASIX) reveal the presence of a prominent lower crustal reflector at a depth of ∼15 kilometers beneath San Francisco and San Pablo bays. Velocity analyses indicate that this reflector marks the base of Franciscan assemblage rocks and the top of a mafic lower crust. Because this compositional contrast would imply a strong rheological contrast, this interface may correspond to a lower crustal detachment surface. If so, it may represent a subhorizontal segment of the North America and Pacific plate boundary proposed by earlier thermo-mechanical and geological models.

Collaboration


Dive into the Thomas M. Brocher's collaboration.

Top Co-Authors

Avatar

Thomas L. Pratt

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Michael A. Fisher

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Richard J. Blakely

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolas I. Christensen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ray E. Wells

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. D. Hyndman

Geological Survey of Canada

View shared research outputs
Top Co-Authors

Avatar

Gary S. Fuis

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge