Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas N. Mather is active.

Publication


Featured researches published by Thomas N. Mather.


Journal of Biological Chemistry | 2006

Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis

Michalis Kotsyfakis; Anderson Sá-Nunes; Ivo M. B. Francischetti; Thomas N. Mather; John F. Andersen; José M. C. Ribeiro

Here we report the ability of the tick Ixodes scapularis, the main vector of Lyme disease in the United States, to actively and specifically affect the host proteolytic activity in the sites of infestation through the release of a cystatin constituent of its saliva. The cystatin presence in the saliva was verified both biochemically and immunologically. We named the protein sialostatin L because of its inhibitory action against cathepsin L. We also show that the proteases it targets, although limited in number, have a prominent role in the proteolytic cascades that take place in the extracellular and intracellular environment. As a result, sialostatin L displays an antiinflammatory role and inhibits proliferation of cytotoxic T lymphocytes. Beyond unraveling another component accounting for the properties of tick saliva, contributing to feeding success and pathogen transmission, we describe a novel tool for studying the role of papain-like proteases in diverse biologic phenomena and a protein with numerous potential pharmaceutical applications.


Biochemical and Biophysical Research Communications | 2003

Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis.

Ivo M. B. Francischetti; Thomas N. Mather; José M. C. Ribeiro

The full-length sequence of tick salivary gland cDNA coding for a protein similar to metalloproteases (MP) of the reprolysin family is reported. The Ixodes scapularis MP is a 488 amino acid (aa) protein containing pre- and pro-enzyme domains, the zinc-binding motif HExxHxxGxxH common to metalloproteases, and a cysteine-rich region. In addition, the predicted amino-terminal sequences of I. scapularis MPs were found by Edman degradation of PVDF-transferred SDS/PAGE-separated tick saliva proteins, indicating that these putative enzymes are secreted. Furthermore, saliva has a metal-dependent proteolytic activity towards gelatin, fibrin(ogen), and fibronectin, but not collagen or laminin. Accordingly, I. scapularis saliva has a rather specific metalloprotease similar to the hemorrhagic proteases of snake venoms. This is the first description of such activity in tick saliva and its role in tick feeding and Borrelia transmission is discussed.


Journal of Immunology | 2007

Prostaglandin E2 Is a Major Inhibitor of Dendritic Cell Maturation and Function in Ixodes scapularis Saliva

Anderson Sá-Nunes; André Báfica; David A. Lucas; Thomas P. Conrads; Timothy D. Veenstra; John F. Andersen; Thomas N. Mather; José M. C. Ribeiro; Ivo M. B. Francischetti

Tick saliva is thought to contain a number of molecules that prevent host immune and inflammatory responses. In this study, the effects of Ixodes scapularis saliva on cytokine production by bone marrow-derived dendritic cells (DCs) from C57BL/6 mice stimulated by TLR-2, TLR-4, and TLR-9 ligands were studied. Saliva at remarkably diluted concentrations (<1/2000) promotes a dose-dependent inhibition of IL-12 and TNF-α production induced by all TLR ligands used. Using a combination of fractionation techniques (microcon filtration, molecular sieving, and reversed-phase chromatography), we unambiguously identified PGE2 as the salivary inhibitor of IL-12 and TNF-α production by DCs. Moreover, we have found that I. scapularis saliva (dilution 1/200; ∼10 nM PGE2) marginally inhibited LPS-induced CD40, but not CD80, CD86, or MHC class II expression. In addition, saliva significantly suppressed the ability of DCs to stimulate Ag-specific CD4+ T cell proliferation and IL-2 production. Notably, the effect of saliva on DC maturation and function was reproduced by comparable concentrations of standard PGE2. These findings indicate that PGE2 accounts for most inhibition of DC function observed with saliva in vitro. The role of salivary PGE2 in vector-host interaction and host immune modulation and inflammation in vivo is also discussed. This study is the first to identify molecularly a DC inhibitor from blood-sucking arthropods.


Emerging Infectious Diseases | 2002

Genetic variants of Ehrlichia phagocytophila, Rhode Island and Connecticut.

Robert F. Massung; Michael J. Mauel; Jessica H. Owens; Nancy Allan; Joshua W. Courtney; Kirby C. Stafford; Thomas N. Mather

Primers were used to amplify a 561-bp region of the 16S rRNA gene of Ehrlichia phagocytophila from Ixodes scapularis ticks and small mammals collected in Rhode Island and Connecticut. DNA sequences for all 50 E. phagocytophila-positive samples collected from 1996 through 1998 in southwestern Connecticut were identical to the sequence reported for E. phagocytophila DNA from confirmed human cases. In contrast, the sequences from 92 of 123 E. phagocytophila-positive Rhode Island samples collected from 1996 through 1999 included several variants differing by 1-2 nucleotides from that in the agent infecting humans. While 11.9% of 67 E. phagocytophila-positive ticks collected during 1997 in Rhode Island harbored ehrlichiae with sequences identical to that of the human agent, 79.1% had a variant sequence not previously described. The low incidence of human ehrlichiosis in Rhode Island may in part result from interference by these variant ehrlichiae with maintenance and transmission of the true agent of human disease.


Thrombosis and Haemostasis | 2004

Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis

Ivo M. B. Francischetti; Thomas N. Mather; José M. C. Ribeiro

Tick saliva is a rich source of molecules with antiinflammatory, antihemostatic and immunosupressive properties. In this paper, a novel tick salivary gland cDNA with sequence homology to tissue factor pathway inhibitor (TFPI) and coding for a protein called Penthalaris has been characterized from the Lyme disease vector, Ixodes scapularis. Penthalaris is structurally unique and distinct from TFPI or TFPI-like molecules described so far, including Ixolaris, NAPc2, TFPI-1 and TFPI-2. Penthalaris is a 308-amino-acid protein (35 kDa, pI 8.58) with 12 cysteine bridges and 5 tandem Kunitz domains. Recombinant Penthalaris was expressed in insect cells and shown to inhibit factor VIIa (FVIIa)/tissue factor(TF)-induced factor X (FX) activation with an IC50 of approximately 100 pM. Penthalaris tightly binds both zymogen FX and enzyme FXa (exosite), but not FVIIa, as demonstrated by column gel-filtration chromatography. At high concentrations, Penthalaris attenuates FVIIa/TF-induced chromogenic substrate (S2288) hydrolysis and FIX activation. In the presence of DEGR-FX or DEGR-FXa, but not des-Gla-DEGR-FXa as scaf-folds, tight and stoichiometric inhibition of FVIIa/TF was achieved. In addition, Penthalaris blocks cell surface-mediated FXa generation by monomer (de-encrypted), but not dimer (encrypted) TF in HL-60 cells. Penthalaris may act in concert with Ixolaris and other salivary anti-hemostatics in order to help ticks to successfully feed on blood. Penthalaris is a novel anticoagulant and a tool to study FVIIa/TF-initiated biologic processes.


The Journal of Infectious Diseases | 2003

Inability of a Variant Strain of Anaplasma phagocytophilum to Infect Mice

Robert F. Massung; Rachael A. Priestley; Nathan J. Miller; Thomas N. Mather; Michael L. Levin

Nymphal Ixodes scapularis ticks were collected from several sites in Rhode Island. Polymerase chain reaction and DNA sequencing were used to determine the presence and prevalence of Anaplasma phagocytophilum human agent (AP-ha) and a genetic variant not associated with human disease (AP-variant 1). The remaining ticks from each cohort were allowed to feed to repletion on either white-footed (Peromyscus leucopus) or DBA/2 (Mus musculus) mice. The engorged ticks and murine blood samples were evaluated for the presence of AP-ha and AP-variant 1. Although a high percentage of the infecting ticks harbored AP-variant 1, only AP-ha was amplified from the murine blood samples. Additional ticks were fed on immunocompromised SCID mice, and, again, only AP-ha was capable of establishing an infection, and only AP-ha could be detected by xenodiagnosis. These data suggest that AP-variant 1 cannot establish an infection in mice, and we propose that AP-variant 1 has an alternative natural reservoir, possibly white-tailed deer.


BMC Biotechnology | 2010

Functional genomics tool: Gene silencing in Ixodes scapularis eggs and nymphs by electroporated dsRNA

Shahid Karim; Emily Troiano; Thomas N. Mather

BackgroundTicks are blood-sucking arthropods responsible for transmitting a wide variety of disease-causing agents, and constitute important public health threats globally. Ixodes scapularis is the primary vector of the Lyme disease agent in the eastern and central U.S. RNAi is a mechanism by which gene-specific double-stranded RNA (dsRNA) triggers degradation of homologous mRNA transcripts. Here, we describe an optimized protocol for effectively suppressing gene expression in the egg and nymphal stages of I. scapularis by electroporation.ResultsThe genes encoding the putative Phospholipase A2 (PLA2), cytoplasmic Cystatin, Syntaxin-5, β-Actin and Calreticulin were targeted by delivering the dsRNA encoding the specific gene coding regions in the unfed nymphs. Silencing was measured using real time qRT-PCR. Electroporation as a mode of dsRNA delivery appears to be substantially efficient and less traumatic to the tick than dsRNA microinjection in the unfed nymphs. Using Cy3-labeled dsRNA to monitor the movement, electroporated dsRNA entered the nymphs and spread to salivary glands and other tissues. The significant disruption of β-actin and cytoplasmic Cystatin transcripts in tick eggs demonstrate the applicability of this technique. The PLA2, cytoplasmic Cystatin, Syntaxin-5, β-Actin and Calreticulin genes were also significantly silenced, suggesting that this method has the potential to introduce dsRNA in eggs and unfed nymphs.ConclusionsOur study demonstrates that electroporation can be used as a simple dsRNA delivery tool in assessing the functional role of tick genes in the vector-host interactions. This technique represents a novel approach for specific gene suppression in immature stages of ticks.


Thrombosis and Haemostasis | 2005

Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis

Ivo M. B. Francischetti; Thomas N. Mather; José M. C. Ribeiro

We report for the first time that saliva of the hard tick and Lyme disease vector, Ixodes scapularis, is a potent inhibitor of angiogenesis. Saliva (< or = 1:500 dilutions) or salivary gland (0.1-0.5 pairs/assay) dose-dependently inhibits microvascular endothelial cell (MVEC) proliferation. Inhibition was also detected with the saliva of the cattle tick Boophilus microplus but not with the salivary gland of Anopheles gambiae, An. stephensi, Lutzomyia longipalpis, Phlebotomus papatasi, Aedes aegypti, Culex quinquefasciatus, and Cimex lectularius. Inhibition of MVEC proliferation by I. Scapularis saliva was accompanied by a change in cell shape (shrinkage of the cytoplasm with loss of cell-cell interactions) and apoptosis which was estimated by expression of phosphatidylserine using the Apopercentage dye, and by a typical pattern of chromatin margination, condensation, and fragmentation as revealed by nuclear staining with Hoechst 33258. The effect of saliva appears to be mediated by endothelial cell alpha5beta1 integrin, because monoclonal antibodies against this but not alphavbeta3, alphavbeta5, alpha9beta1, or alpha2beta1 integrins remarkably block its effect. In addition, SDS/PAGE shows that saliva specifically degrades purified alpha5beta1 but not alphavbeta5 or alphavbeta3 integrins. Incubation of saliva with EDTA and 1,10-phenanthroline, but not phenylmethylsulfonyl fluoride (PMSF), inhibits saliva-dependent degradation of purified alpha5beta1 integrin, suggesting that a metalloprotease is responsible for the activity. Finally, saliva at < or = 1:1,000 dilutions blocks sprouting formation from chick embryo aorta implanted in Matrigel, an in vitro model of angiogenesis. These findings introduce the concept that tick saliva is a negative modulator of angiogenesis-dependent wound healing and tissue repair, therefore allowing ticks to feed for days. Inhibition of angiogenesis was hitherto an unidentified biologic property of the saliva of any blood-sucking arthropod studied so far. Its presence in tick saliva may be regarded as an additional source of angiogenesis inhibitors with potential applications for the study of both vector and vascular biology.


Journal of Biological Chemistry | 2007

Selective cysteine protease inhibition contributes to blood-feeding success of the tick ixodes scapularis

Michalis Kotsyfakis; Shahid Karim; John F. Andersen; Thomas N. Mather; José M. C. Ribeiro

Ixodes scapularis is the main vector of Lyme disease in the eastern and central United States. Tick salivary secretion has been shown as important for both blood-meal completion and pathogen transmission. Here we report a duplication event of cystatin genes in its genome that results in a transcription-regulated boost of saliva inhibitory activity against a conserved and relatively limited number of vertebrate papain-like cysteine proteases during blood feeding. We further show that the polypeptide products of the two genes differ in their binding affinity for some enzyme targets, and they display different antigenicity. Moreover, our reverse genetic approach employing RNA interference uncovered a crucial mediation in tick-feeding success. Given the role of the targeted enzymes in vertebrate immunity, we also show that host immunomodulation is implicated in the deleterious phenotype of silenced ticks making I. scapularis cystatins attractive targets for development of antitick vaccines.


Experimental Parasitology | 1990

Borrelia burgdorferi and Babesia microti: Efficiency of transmission from reservoirs to vector ticks (Ixodes dammini)

Thomas N. Mather; Sam R. Telford; Sean I. Moore; Andrew Spielman

In endemic regions, Peromyscus leucopus, the mouse reservoir of the Lyme disease spirochete (Borrelia burgdorferi) and the piroplasm causing human babesiosis (Babesia microti), is nearly universally infected with both agents. Paradoxically, spirochetal infection is nearly twice as prevalent as is babesial infection in populations of field-collected nymphal Ixodes dammini, the tick vector. In the laboratory, a similarly disproportionate rate of infection was observed among nymphal ticks, feeding as larvae, on either B. burgdorferi- or B. microti-infected mice. Ticks which fed on mice with concurrent spirochetal and babesial infections also exhibited twice the incidence of spirochetal infection over that of the piroplasm. These data suggest that the efficiency of acquisition and transstadial passage of B. burgdorferi and B. microti infection differ by a factor of two. This discrepancy may explain differences observed both in the prevalence of infection in ticks collected in the field, as well as the apparently greater risk of spirochetal infection to humans in endemic areas.

Collaboration


Dive into the Thomas N. Mather's collaboration.

Top Co-Authors

Avatar

José M. C. Ribeiro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John F. Andersen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nathan J. Miller

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Jesus G. Valenzuela

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert F. Massung

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Howard S. Ginsberg

Patuxent Wildlife Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge