Thomas Tücking
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Tücking.
Physics in Medicine and Biology | 2006
Lars Dietrich; Siri Jetter; Thomas Tücking; Simeon Nill; Uwe Oelfke
A new online imaging approach, linac-integrated cone beam CT (CBCT), has been developed over the past few years. It has the advantage that a patient can be examined in their treatment position directly before or during a radiotherapy treatment. Unfortunately, respiratory organ motion, one of the largest intrafractional organ motions, often leads to artefacts in the reconstructed 3D images. One way to take this into account is to register the breathing phase during image acquisition for a phase-correlated image reconstruction. Therefore, the main focus of this work is to present a system which has the potential to investigate the correlation between internal (movement of the diaphragm) and external (data of a respiratory gating system) information about breathing phase and amplitude using an inline CBCT scanner. This also includes a feasibility study about using the acquired information for a respiratory-correlated 4D CBCT reconstruction. First, a moving lung phantom was used to develop and to specify the required methods which are based on an image reconstruction using only projections belonging to a certain moving phase. For that purpose, the corresponding phase has to be detected for each projection. In the case of the phantom, an electrical signal allows one to track the movement in real time. The number of projections available for the image reconstruction depends on the breathing phase and the size of the position range from which projections should be used for the reconstruction. The narrower this range is, the better the inner structures can be located, but also the noise of the images increases due to the limited number of projections. This correlation has also been analysed. In a second step, the methods were clinically applied using data sets of patients with lung tumours. In this case, the breathing phase was detected by an external gating system (AZ-733V, Anzai Medical Co.) based on a pressure sensor attached to the patients abdominal region with a fixation belt. The comparison of the reconstructed 4D CBCT images and the corresponding 4D CT images used for the treatment planning provides the required information for the calculation of possible setup errors. So, a repositioning of the patient is feasible even though the patient moves due to respiration. In addition to the external signal, the position of the diaphragm in the cranial-caudal direction could be extracted from each projection. Both independent sources of information show a very good agreement of the phase and even the amplitude of the movement and the external signal respectively. This suggests the usability of such a system for a gated dose delivery approach. However, more studies involving patients with different incidences have to be carried out to confirm these first results.
Radiation Oncology | 2006
Christoph Thilmann; Simeon Nill; Thomas Tücking; Angelika Höss; Bernd Hesse; Lars Dietrich; Rolf Bendl; Bernhard Rhein; Peter Häring; Christian Thieke; Uwe Oelfke; Juergen Debus; Peter E. Huber
BackgroundThe purpose of the study was the clinical implementation of a kV cone beam CT (CBCT) for setup correction in radiotherapy.Patients and methodsFor evaluation of the setup correction workflow, six tumor patients (lung cancer, sacral chordoma, head-and-neck and paraspinal tumor, and two prostate cancer patients) were selected. All patients were treated with fractionated stereotactic radiotherapy, five of them with intensity modulated radiotherapy (IMRT). For patient fixation, a scotch cast body frame or a vacuum pillow, each in combination with a scotch cast head mask, were used. The imaging equipment, consisting of an x-ray tube and a flat panel imager (FPI), was attached to a Siemens linear accelerator according to the in-line approach, i.e. with the imaging beam mounted opposite to the treatment beam sharing the same isocenter. For dose delivery, the treatment beam has to traverse the FPI which is mounted in the accessory tray below the multi-leaf collimator. For each patient, a predefined number of imaging projections over a range of at least 200 degrees were acquired. The fast reconstruction of the 3D-CBCT dataset was done with an implementation of the Feldkamp-David-Kress (FDK) algorithm. For the registration of the treatment planning CT with the acquired CBCT, an automatic mutual information matcher and manual matching was used.Results and discussionBony landmarks were easily detected and the table shifts for correction of setup deviations could be automatically calculated in all cases. The image quality was sufficient for a visual comparison of the desired target point with the isocenter visible on the CBCT. Soft tissue contrast was problematic for the prostate of an obese patient, but good in the lung tumor case. The detected maximum setup deviation was 3 mm for patients fixated with the body frame, and 6 mm for patients positioned in the vacuum pillow. Using an action level of 2 mm translational error, a target point correction was carried out in 4 cases. The additional workload of the described workflow compared to a normal treatment fraction led to an extra time of about 10–12 minutes, which can be further reduced by streamlining the different steps.ConclusionThe cone beam CT attached to a LINAC allows the acquisition of a CT scan of the patient in treatment position directly before treatment. Its image quality is sufficient for determining target point correction vectors. With the presented workflow, a target point correction within a clinically reasonable time frame is possible. This increases the treatment precision, and potentially the complex patient fixation techniques will become dispensable.
Physics in Medicine and Biology | 2005
Lars Dietrich; Thomas Tücking; Simeon Nill; Uwe Oelfke
Respiratory organ motion is known to be one of the largest intrafractional organ motions. Therefore, it is important to investigate the potential benefit of gated dose delivery approaches which aim to account for the respective dose uncertainties. In this study respiration is simulated by a moving lung phantom; the movement is not restricted to a normal sinusoidal progression and simulates the one of the embedded lung tumour in the cranial-caudal direction. An IMRT plan with a total of 29 beam segments was designed for the treatment of this tumour. It was irradiated in its resting position-which is the position at exhalation-and during movement. Furthermore the irradiation was triggered using different amplitude thresholds, which means that the irradiation only proceeded if the deviation of the tumours position from its resting position is smaller than the given threshold. We determined the gating-related increase of the treatment time for various gating procedures. We also measured the resulting dose distribution in specific slices of the phantom perpendicular to the direction of the movement using film dosimetry and compared it to the dose distribution of the static case. Since these film measurements cannot be done inside the whole tumour, additionally the movement and gating was simulated using the planning software to calculate the 3D dose distribution inside the tumour and to generate dose volume histograms for different treatment modalities. The total treatment time was observed to increase by 20%-100% depending on the individual gating threshold and can be calculated easily. The analysis of the films showed that irradiation without gating leads to significant underdosages up to 33%, especially at the edge of the tumour. With gating it is possible to considerably reduce this underdosage down to 9% depending on the trigger threshold. The calculation of the dose volume histograms makes it possible to find a reasonable compromise between the improvement of the dose distribution and the increase of the treatment time.
Journal of Applied Clinical Medical Physics | 2003
Thomas Tücking; Simeon Nill; Uwe Oelfke
In order to provide automatic IMRT dose delivery with an add‐on MMLC a technical integration of a MMLC system with a linear accelerator was realized. The principle of this integration and the changes and enhancements of the existing hard‐and software are briefly described. The system was tested by the automatic delivery of an IMRT plan designed for a head and neck phantom. A verification of dose delivery was performed with film dosimetry. The plan consisting of 78 “step and shoot” segments could be delivered within 17 minutes. A high spatial accuracy of the fluence pattern at the isocentre was reached by a resolution of 2.75×2.75 mm2. The measured dose profiles were within 3% of the maximum dose of the calculated profiles. PACS number(s): 87.53.–j, 87.90.+y
Medical Dosimetry | 2006
Uwe Oelfke; Thomas Tücking; Simeon Nill; Annete Seeber; Bernd Hesse; Peter E. Huber; Christoph Thilmann
Radiotherapy and Oncology | 2005
Simeon Nill; Thomas Tücking; Marc W. Münter; Uwe Oelfke
Zeitschrift Fur Medizinische Physik | 2009
Irmtraud Reitz; Bernd-Michael Hesse; Simeon Nill; Thomas Tücking; Uwe Oelfke
International Journal of Radiation Oncology Biology Physics | 2005
Christoph Thilmann; Simeon Nill; Thomas Tücking; Bernd Hesse; Lars Dietrich; Bernhard Rhein; P Haering; Uwe Oelfke; Jürgen Debus; Peter E. Huber
Radiotherapy and Oncology | 2009
Simeon Nill; Thomas Tücking; Michael Schwarz; Rolf Bendl; Uwe Oelfke
Radiotherapy and Oncology | 2005
B. Hesse; Simeon Nill; Thomas Tücking; Uwe Oelfke