Thomas V. Magee
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas V. Magee.
Journal of Medicinal Chemistry | 2009
Thomas V. Magee; Sharon L. Ripp; Bryan Li; Richard A. Buzon; Lou Chupak; Thomas J. Dougherty; Steven M. Finegan; Dennis Girard; Anne E. Hagen; Michael J. Falcone; Kathleen A. Farley; Karl Granskog; Joel R. Hardink; Michael D. Huband; Barbara J. Kamicker; Takushi Kaneko; Michael J. Knickerbocker; Jennifer Liras; Andrea Marra; Ivy Medina; Thuy-Trinh Nguyen; Mark C. Noe; R. Scott Obach; John P. O’Donnell; Joseph Penzien; Usa Reilly; John Schafer; Yue Shen; Gregory G. Stone; Timothy J. Strelevitz
Respiratory tract bacterial strains are becoming increasingly resistant to currently marketed macrolide antibiotics. The current alternative telithromycin (1) from the newer ketolide class of macrolides addresses resistance but is hampered by serious safety concerns, hepatotoxicity in particular. We have discovered a novel series of azetidinyl ketolides that focus on mitigation of hepatotoxicity by minimizing hepatic turnover and time-dependent inactivation of CYP3A isoforms in the liver without compromising the potency and efficacy of 1.
Journal of Computer-aided Molecular Design | 2011
Wan F. Lau; Jane M. Withka; David Hepworth; Thomas V. Magee; Yuhua J. Du; Gregory A. Bakken; Michael D. Miller; Zachary S. Hendsch; Venkataraman Thanabal; Steve A. Kolodziej; Li Xing; Qiyue Hu; Lakshmi Narasimhan; Robert Love; Maura E. Charlton; Samantha J. Hughes; Willem P. van Hoorn; James E. J. Mills
Fragment Based Drug Discovery (FBDD) continues to advance as an efficient and alternative screening paradigm for the identification and optimization of novel chemical matter. To enable FBDD across a wide range of pharmaceutical targets, a fragment screening library is required to be chemically diverse and synthetically expandable to enable critical decision making for chemical follow-up and assessing new target druggability. In this manuscript, the Pfizer fragment library design strategy which utilized multiple and orthogonal metrics to incorporate structure, pharmacophore and pharmacological space diversity is described. Appropriate measures of molecular complexity were also employed to maximize the probability of detection of fragment hits using a variety of biophysical and biochemical screening methods. In addition, structural integrity, purity, solubility, fragment and analog availability as well as cost were important considerations in the selection process. Preliminary analysis of primary screening results for 13 targets using NMR Saturation Transfer Difference (STD) indicates the identification of uM–mM hits and the uniqueness of hits at weak binding affinities for these targets.
Journal of Medicinal Chemistry | 2013
Thomas V. Magee; Matthew Frank Brown; Jeremy T. Starr; David C. Ackley; Joseph A. Abramite; Jiri Aubrecht; Andrew Butler; Jared L. Crandon; Fadia Dib-Hajj; Mark Edward Flanagan; Karl Granskog; Joel R. Hardink; Michael D. Huband; Rebecca Irvine; Michael Kuhn; Karen L. Leach; Bryan Li; Jian Lin; David R. Luke; Shawn H. MacVane; Alita A. Miller; Sandra P. McCurdy; James M. McKim; David P. Nicolau; Thuy-Trinh Nguyen; Mark C. Noe; John P. O’Donnell; Scott B. Seibel; Yue Shen; Antonia F. Stepan
We report novel polymyxin analogues with improved antibacterial in vitro potency against polymyxin resistant recent clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa . In addition, a human renal cell in vitro assay (hRPTEC) was used to inform structure-toxicity relationships and further differentiate analogues. Replacement of the Dab-3 residue with a Dap-3 in combination with a relatively polar 6-oxo-1-phenyl-1,6-dihydropyridine-3-carbonyl side chain as a fatty acyl replacement yielded analogue 5x, which demonstrated an improved in vitro antimicrobial and renal cytotoxicity profiles relative to polymyxin B (PMB). However, in vivo PK/PD comparison of 5x and PMB in a murine neutropenic thigh model against P. aeruginosa strains with matched MICs showed that 5x was inferior to PMB in vivo, suggesting a lack of improved therapeutic index in spite of apparent in vitro advantages.
Drug and Chemical Toxicology | 2014
Deborah Burt; Sarah J. Crowell; David C. Ackley; Thomas V. Magee
Abstract Polypeptide antibiotics, such as polymyxins and aminoglycosides, are essential for treatment of life-threatening Gram-negative infections. Acute kidney injury (AKI) attributed to treatment with these agents severely limits their clinical application. Because standard biomarkers (serum creatinine [sCRE] and blood urea nitrogen [BUN]) feature limited sensitivity, the development of novel biomarkers of AKI is important. Here, we compared the performance of standard and emerging biomarkers of AKI for the detection of nephrotoxicity caused by polymyxin B across multiple species (rat, dog and monkey). Further, we applied a biomarker-driven strategy for selection of new kidney-sparing polymyxin analogs. Polymyxin B treatment produced dose–dependent kidney injury observed as proximal tubular degeneration/regeneration and necrosis across all species. Dogs and monkeys had similar biomarker profiles that included increases of both standard (sCRE and BUN) and emerging (urinary neutrophil gelatinase-associated Lipocalin [NGAL] and urinary kidney injury molecule 1 [KIM-1]) biomarkers of AKI. In contrast, only urinary NGAL and urinary KIM-1 were sufficiently capable of detecting kidney injury in rats. Because rats provide a feasible model for screening compounds in drug development, we utilized urinary NGAL as a sensitive biomarker of AKI to screen and rank order compounds in a 2-day toxicity study. To our knowledge, this study provides a first example of successfully applying biomarkers of AKI in drug development.
Scientific Reports | 2015
Kim Huard; Janice A. Brown; Jessica E. C. Jones; Shawn Cabral; Kentaro Futatsugi; Matthew Gorgoglione; Adhiraj Lanba; Nicholas B. Vera; Yimin Zhu; Qingyun Yan; Yingjiang Zhou; Cecile Vernochet; Keith Riccardi; Angela Wolford; David Pirman; Mark Niosi; Gary E. Aspnes; Michael Herr; Nathan E. Genung; Thomas V. Magee; Daniel P. Uccello; Paula M. Loria; Li Di; James R. Gosset; David Hepworth; Timothy P. Rolph; Jeffrey A. Pfefferkorn; Derek M. Erion
Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints.
Bioorganic & Medicinal Chemistry Letters | 2015
Thomas V. Magee
Protein-protein interactions (PPIs) present a formidable challenge to medicinal chemistry. The extended and open nature of many binding sites at protein interfaces has made it difficult to find useful chemical matter by traditional screening methods using standard screening libraries. This Digest focuses on the progress that has been made in discovering small-molecule modulators for a diverse selection of PPI targets using fragment screening and highlights the utility of this strategy in this context.
Bioorganic & Medicinal Chemistry Letters | 1997
Robert Gerald Linde; N.C. Birsner; R.Y. Chandrasekaran; J. Clancy; R.J. Howe; J.P. Lyssikatos; C.P. MacLelland; Thomas V. Magee; J.W. Petitpas; J.P. Rainville; W.‐G. Su; C.B. Vu; David A. Whipple
Abstract Modification and replacement of the β-lysine side chain of capreomycin and tuberactinomycin cyclic pentapeptide derivatives resulted in compounds with good antibacterial potency against multidrug-resistant pathogens.
Bioorganic & Medicinal Chemistry Letters | 1997
John P. Dirlam; A. M. Belton; N.C. Birsner; R. R. Brooks; Shang-Poa Chang; R.Y. Chandrasekaran; J. Clancy; Brian J. Cronin; B. P. Dirlam; Steven M. Finegan; S. A. Froshauer; A.E. Girard; Shigeru F. Hayashi; R.J. Howe; J. C. Kane; Barbara J. Kamicker; S. A. Kaufman; Nicole L. Kolosko; M. A. Lemay; Robert Gerald Linde; J.P. Lyssikatos; C.P. MacLelland; Thomas V. Magee; M. A. Massa; S. A. Miller; Martha L. Minich; David Austen Perry; J.W. Petitpas; C.P. Reese; Scott B. Seibel
Abstract A 6a-(3′,4′-dichlorophenylamino) analog of viomycin was uncovered by a high-throughput screen against the animal health pathogen Pasteurella haemolytica, and has served as a novel lead structure for our infectious disease programs. We report herein the synthesis and activity of analogs of tuberactinomycins and capreomycin that are active against Pasteurella spp., methicillin-resistant Staphylococcus aureus, and vancomycin-resistant enterococci. This paper describes the synthesis and activity of some C-6a-substituted analogs of tuberactinomycins and capreomycin, which are active against Pasteurella spp., methicillin-resistant Staphylococcus aureus, and vancomycin-resistant enterococci.
Bioorganic & Medicinal Chemistry Letters | 2013
Thomas V. Magee; Seungil Han; Sandra P. McCurdy; Thuy-Trinh Nguyen; Karl Granskog; Eric S. Marr; Bruce Maguire; Michael D. Huband; Jinshan Michael Chen; Timothy A. Subashi; Veerabahu Shanmugasundaram
A novel series of 3-O-carbamoyl erythromycin A derived analogs, labeled carbamolides, with activity versus resistant bacterial isolates of staphylococci (including macrolide and oxazolidinone resistant strains) and streptococci are reported. An (R)-2-aryl substituent on a pyrrolidine carbamate appeared to be critical for achieving potency against resistant strains. Crystal structures showed a distinct aromatic interaction between the (R)-2-aryl (3-pyridyl for 4d) substituent on the pyrrolidine and G2484 (G2505, Escherichia coli) of the Deinococcus radiodurans 50S ribosome (3.2Å resolution).
Expert Opinion on Therapeutic Patents | 2005
Thomas J. Dougherty; Thomas V. Magee
The continuing increase in the incidence of multi-drug resistant pathogenic bacteria is the prime driver in efforts to identify novel antibacterial classes. The intent is to introduce fundamentally new compounds that inhibit critical bacterial functions not previously targeted by currently marketed classes of antibiotics. This review summarises patent applications published within the period March 2002 – March 2005 describing novel compounds with antibacterial activity that interfere with essential cell functions, which are largely untapped as targets, or that appear to interact with established targets in novel ways, pointing to their potential to circumvent current and future bacterial resistance. New variants of existing antibiotics that have been modified to address specific resistance issues within the class are not included in this review.