Thomas Westerling
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Westerling.
Science | 2012
Kiran Padmanabhan; Maria S. Robles; Thomas Westerling; Charles J. Weitz
The Inner Workings of a Clock Eukaryotic circadian clocks are built at least in part on transcriptional feedback loops, but the mechanisms underlying circadian feedback are poorly understood. Padmanabhan et al. (p. 599, published online 5 July) explored the transcriptional feedback mechanism at the heart of the mammalian circadian clock. The proteins PERIOD (PER) and CRYPTOCHROME suppress transcription of their own genes. PER complexes do so in part by recruiting a histone deacetylase to promoters of clock genes. But PER is also present on DNA in a complex with Senataxin, a helicase that functions in transcriptional termination. Senataxin appears to be inhibited in the PER complex, thus inhibiting termination and further reducing the rate of transcription. A circadian rhythm regulator acts by altering the elongation stage of gene expression. Eukaryotic circadian clocks are built on transcriptional feedback loops. In mammals, the PERIOD (PER) and CRYPTOCHROME (CRY) proteins accumulate, form a large nuclear complex (PER complex), and repress their own transcription. We found that mouse PER complexes included RNA helicases DDX5 and DHX9, active RNA polymerase II large subunit, Per and Cry pre-mRNAs, and SETX, a helicase that promotes transcriptional termination. During circadian negative feedback, RNA polymerase II accumulated near termination sites on Per and Cry genes but not on control genes. Recruitment of PER complexes to the elongating polymerase at Per and Cry termination sites inhibited SETX action, impeding RNA polymerase II release and thereby repressing transcriptional reinitiation. Circadian clock negative feedback thus includes direct control of transcriptional termination.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Shannon T. Bailey; Hyunjin Shin; Thomas Westerling; Xiaole Shirley Liu; Myles Brown
More than two-thirds of breast cancers express the estrogen receptor (ER) and depend on estrogen for growth and survival. Therapies targeting ER function, including aromatase inhibitors that block the production of estrogens and ER antagonists that alter ER transcriptional activity, play a central role in the treatment of ER+ breast cancers of all stages. In contrast to ER− breast cancers, which frequently harbor mutations in the p53 tumor suppressor, ER+ breast cancers are predominantly wild type for p53. Despite harboring wild-type p53, ER+ breast cancer cells are resistant to chemotherapy-induced apoptosis in the presence of estrogen. Using genome-wide approaches, we have addressed the mechanism by which ER antagonizes the proapoptotic function of p53. Interestingly, both ER agonists such as estradiol and the selective ER modulator (SERM) tamoxifen promote p53 antagonism. In contrast, the full ER antagonist fulvestrant blocks the ability of ER to inhibit p53-mediated cell death. This inhibition works through a mechanism involving the modulation of a subset of p53 and ER target genes that can predict the relapse-free survival of patients with ER+ breast cancer. These findings suggest an improved strategy for the treatment of ER+ breast cancer using antagonists that completely block ER action together with drugs that activate p53-mediated cell death.
Cancer Research | 2015
Shannon T. Bailey; Thomas Westerling; Myles Brown
Among the genes regulated by estrogen receptor (ER) are miRNAs that play a role in breast cancer signaling pathways. To determine whether miRNAs are involved in ER-positive breast cancer progression to hormone independence, we profiled the expression of 800 miRNAs in the estrogen-dependent human breast cancer cell line MCF7 and its estrogen-independent derivative MCF7:2A (MCF7:2A) using NanoString. We found 78 miRNAs differentially expressed between the two cell lines, including a cluster comprising let-7c, miR99a, and miR125b, which is encoded in an intron of the long noncoding RNA LINC00478. These miRNAs are ER targets in MCF7 cells, and nearby ER binding and their expression are significantly decreased in MCF7:2A cells. The expression of these miRNAs was interrogated in patient samples profiled in The Cancer Genome Atlas (TCGA). Among luminal tumors, these miRNAs are expressed at higher levels in luminal A versus B tumors. Although their expression is uniformly low in luminal B tumors, they are lost only in a subset of luminal A patients. Interestingly, this subset with low expression of these miRNAs had worse overall survival compared with luminal A patients with high expression. We confirmed that miR125b directly targets HER2 and that let-7c also regulates HER2 protein expression. In addition, HER2 protein expression and activity are negatively correlated with let-7c expression in TCGA. In summary, we identified an ER-regulated miRNA cluster that regulates HER2, is lost with progression to estrogen independence, and may serve as a biomarker of poor outcome in ER(+) luminal A breast cancer patients.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Luz E. Tavera-Mendoza; Thomas Westerling; Eric Libby; Andriy Marusyk; Laura Cato; Raymundo Cassani; Lisa A. Cameron; Scott B. Ficarro; Jarrod A. Marto; Jelena Klawitter; Myles Brown
Significance Epidemiological evidence suggests that vitamin D can protect women from developing breast cancer (BC). This study reveals that vitamin D and its receptor regulate autophagy in both normal mammary epithelial cells and luminal BCs, and suggests a potential mechanism underlying the link between vitamin D levels and BC risk. In addition, this work suggests that vitamin D receptor ligands could be exploited therapeutically for the treatment of a significant subset of BCs. Women in North America have a one in eight lifetime risk of developing breast cancer (BC), and a significant proportion of these individuals will develop recurrent BC and will eventually succumb to the disease. Metastatic, therapy-resistant BC cells are refractory to cell death induced by multiple stresses. Here, we document that the vitamin D receptor (VDR) acts as a master transcriptional regulator of autophagy. Activation of the VDR by vitamin D induces autophagy and an autophagic transcriptional signature in BC cells that correlates with increased survival in patients; strikingly, this signature is present in the normal mammary gland and is progressively lost in patients with metastatic BC. A number of epidemiological studies have shown that sufficient vitamin D serum levels might be protective against BC. We observed that dietary vitamin D supplementation in mice increases basal levels of autophagy in the normal mammary gland, highlighting the potential of vitamin D as a cancer-preventive agent. These findings point to a role of vitamin D and the VDR in modulating autophagy and cell death in both the normal mammary gland and BC cells.
eLife | 2016
Zineb Mounir; Joshua Korn; Thomas Westerling; Fallon Lin; Christina A. Kirby; Markus Schirle; Gregg McAllister; Greg Hoffman; Nadire Ramadan; Anke Hartung; Yan Feng; David Randal Kipp; Christopher Quinn; Michelle Fodor; Jason Baird; Marie Schoumacher; Ronald Meyer; James Deeds; Gilles Buchwalter; Travis Stams; Nicholas Keen; William R. Sellers; Myles Brown; Raymond Pagliarini
The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR’s ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation. DOI: http://dx.doi.org/10.7554/eLife.13964.001
Molecular Endocrinology | 2014
Francesca K. Gordon; Caroline S. Vallaster; Thomas Westerling; Lakshmanan K. Iyer; Myles Brown; Gavin R. Schnitzler
Estrogen has vascular protective effects in premenopausal women and in women younger than 60 years who are receiving hormone replacement therapy. However, estrogen also increases the risks of breast and uterine cancers and of venous thromboses linked to up-regulation of coagulation factors in the liver. In mouse models, the vasculoprotective effects of estrogen are mediated by the estrogen receptor α (ERα) transcription factor. Here, through next-generation sequencing approaches, we show that almost all of the genes regulated by 17β-estradiol (E2) differ between mouse aorta and mouse liver, ex vivo, and that this difference is associated with a distinct genomewide distribution of ERα on chromatin. Bioinformatic analysis of E2-regulated promoters and ERα binding site sequences identify several transcription factors that may determine the tissue specificity of ERα binding and E2-regulated genes, including the enrichment of NF-κB, AML1, and AP1 sites in the promoters of E2 down-regulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggest ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues.
PLOS Pathogens | 2017
Jingwei Cheng; Donglim Esther Park; Christian Berrios; Elizabeth A. White; Reety Arora; Rosa Yoon; Timothy Branigan; Tengfei Xiao; Thomas Westerling; Alexander J. Federation; Rhamy Zeid; Benjamin Strober; Selene K. Swanson; Laurence Florens; James E. Bradner; Myles Brown; Peter M. Howley; Megha Padi; Michael P. Washburn; James A. DeCaprio
Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.
eLife | 2017
Laura Cato; Antje Neeb; Adam Sharp; Victor Buzon; Scott B. Ficarro; Linxiao Yang; Claudia Muhle-Goll; Nane C. Kuznik; Ruth Riisnaes; Daniel Nava Rodrigues; Olivier Armant; Victor Gourain; Guillaume Adelmant; Emmanuel A. Ntim; Thomas Westerling; David Dolling; Pasquale Rescigno; Ines Figueiredo; Friedrich Fauser; Jennifer Wu; Jaice T. Rottenberg; L. Shatkina; Claudia Ester; Burkhard Luy; Holger Puchta; Jakob Troppmair; Nicole Jung; Stefan Bräse; Uwe Strähle; Jarrod A. Marto
Targeting the activation function-1 (AF-1) domain located in the N-terminus of the androgen receptor (AR) is an attractive therapeutic alternative to the current approaches to inhibit AR action in prostate cancer (PCa). Here we show that the AR AF-1 is bound by the cochaperone Bag-1L. Mutations in the AR interaction domain or loss of Bag-1L abrogate AR signaling and reduce PCa growth. Clinically, Bag-1L protein levels increase with progression to castration-resistant PCa (CRPC) and high levels of Bag-1L in primary PCa associate with a reduced clinical benefit from abiraterone when these tumors progress. Intriguingly, residues in Bag-1L important for its interaction with the AR AF-1 are within a potentially druggable pocket, implicating Bag-1L as a potential therapeutic target in PCa.
Journal of Offender Rehabilitation | 2015
Thomas Westerling; Julie M. Koch; Travis Mitchell; Julie Gallaher Clark
Exoffenders represent a population with unique concerns related to high unemployment. Betz and Hackett’s (1981) career decision self-efficacy theory suggests that efficacy is an important component of career development. The differences in career decision self-efficacy between exoffenders and nonoffenders before and after a career development workshop were examined. Prior to the workshop, both groups were similar in overall career decision self-efficacy, self-appraisal, goal setting, planning, and problem solving, but exoffenders had lower occupational information. After the workshop, there were no significant differences between exoffenders and nonoffenders. Findings indicate that the entire sample experienced growth in all areas except for planning.
Nature Communications | 2018
Marco Padilla-Rodriguez; Sara S. Parker; Deanna G. Adams; Thomas Westerling; Julieann Puleo; Adam W. Watson; Samantha M. Hill; Muhammad Noon; Raphaël Gaudin; Jesse Aaron; Daoqin Tong; Denise J. Roe; Beatrice Knudsen; Ghassan Mouneimne
Estrogen promotes growth of estrogen receptor-positive (ER+) breast tumors. However, epidemiological studies examining the prognostic characteristics of breast cancer in postmenopausal women receiving hormone replacement therapy reveal a significant decrease in tumor dissemination, suggesting that estrogen has potential protective effects against cancer cell invasion. Here, we show that estrogen suppresses invasion of ER+ breast cancer cells by increasing transcription of the Ena/VASP protein, EVL, which promotes the generation of suppressive cortical actin bundles that inhibit motility dynamics, and is crucial for the ER-mediated suppression of invasion in vitro and in vivo. Interestingly, despite its benefits in suppressing tumor growth, anti-estrogenic endocrine therapy decreases EVL expression and increases local invasion in patients. Our results highlight the dichotomous effects of estrogen on tumor progression and suggest that, in contrast to its established role in promoting growth of ER+ tumors, estrogen has a significant role in suppressing invasion through actin cytoskeletal remodeling.Whilst estrogen is known to be tumorigenic in some breast cancer, in some contexts it can be protective against invasion and dissemination. Here, the authors show estrogen can promote generation of Suppressive Cortical Actin Bundles that can inhibit motility dynamics through EVL-mediated actin cytoskeletal remodeling.