Thorbjorg Jonsdottir
deCODE genetics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thorbjorg Jonsdottir.
Nature Genetics | 2006
Struan F. A. Grant; Gudmar Thorleifsson; Inga Reynisdottir; Rafil Benediktsson; Andrei Manolescu; Jesus Sainz; Agnar Helgason; Hreinn Stefansson; Valur Emilsson; Anna Helgadottir; Unnur Styrkarsdottir; Kristinn P. Magnusson; G. Bragi Walters; Ebba Palsdottir; Thorbjorg Jonsdottir; Thorunn Gudmundsdottir; Arnaldur Gylfason; Jona Saemundsdottir; Robert L. Wilensky; Muredach P. Reilly; Daniel J. Rader; Yu Z. Bagger; Claus Christiansen; Vilmundur Gudnason; Gunnar Sigurdsson; Unnur Thorsteinsdottir; Jeffrey R. Gulcher; Augustine Kong; Kari Stefansson
We have previously reported suggestive linkage of type 2 diabetes mellitus to chromosome 10q. We genotyped 228 microsatellite markers in Icelandic individuals with type 2 diabetes and controls throughout a 10.5-Mb interval on 10q. A microsatellite, DG10S478, within intron 3 of the transcription factor 7–like 2 gene (TCF7L2; formerly TCF4) was associated with type 2 diabetes (P = 2.1 × 10−9). This was replicated in a Danish cohort (P = 4.8 × 10−3) and in a US cohort (P = 3.3 × 10−9). Compared with non-carriers, heterozygous and homozygous carriers of the at-risk alleles (38% and 7% of the population, respectively) have relative risks of 1.45 and 2.41. This corresponds to a population attributable risk of 21%. The TCF7L2 gene product is a high mobility group box–containing transcription factor previously implicated in blood glucose homeostasis. It is thought to act through regulation of proglucagon gene expression in enteroendocrine cells via the Wnt signaling pathway.
Science | 2007
Anna Helgadottir; Gudmar Thorleifsson; Andrei Manolescu; Solveig Gretarsdottir; Thorarinn Blondal; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Asgeir Sigurdsson; Adam Baker; Arnar Palsson; Gisli Masson; Daniel F. Gudbjartsson; Kristinn P. Magnusson; Karl Andersen; Allan I. Levey; Valgerdur M. Backman; Sigurborg Matthiasdottir; Thorbjorg Jonsdottir; Stefan Palsson; Helga Einarsdottir; Steinunn Gunnarsdottir; Arnaldur Gylfason; Viola Vaccarino; W. Craig Hooper; Muredach P. Reilly; Christopher B. Granger; Harland Austin; Daniel J. Rader; Svati H. Shah; Arshed A. Quyyumi
The global endemic of cardiovascular diseases calls for improved risk assessment and treatment. Here, we describe an association between myocardial infarction (MI) and a common sequence variant on chromosome 9p21. This study included a total of 4587 cases and 12,767 controls. The identified variant, adjacent to the tumor suppressor genes CDKN2A and CDKN2B, was associated with the disease with high significance. Approximately 21% of individuals in the population are homozygous for this variant, and their estimated risk of suffering myocardial infarction is 1.64 times as great as that of noncarriers. The corresponding risk is 2.02 times as great for early-onset cases. The population attributable risk is 21% for MI in general and 31% for early-onset cases.
Nature Genetics | 2009
Gudmar Thorleifsson; G. Bragi Walters; Daniel F. Gudbjartsson; Valgerdur Steinthorsdottir; Patrick Sulem; Anna Helgadottir; Unnur Styrkarsdottir; Solveig Gretarsdottir; Steinunn Thorlacius; Ingileif Jonsdottir; Thorbjorg Jonsdottir; Elinborg J Olafsdottir; Gudridur Olafsdottir; Thorvaldur Jonsson; Frosti Jonsson; Knut Borch-Johnsen; Torben Hansen; Gitte Andersen; Torben Jørgensen; Torsten Lauritzen; Katja K. Aben; A.L.M. Verbeek; Nel Roeleveld; E. Kampman; Lisa R. Yanek; Lewis C. Becker; Laufey Tryggvadottir; Thorunn Rafnar; Diane M. Becker; Jeffrey R. Gulcher
Obesity results from the interaction of genetic and environmental factors. To search for sequence variants that affect variation in two common measures of obesity, weight and body mass index (BMI), both of which are highly heritable, we performed a genome-wide association (GWA) study with 305,846 SNPs typed in 25,344 Icelandic, 2,998 Dutch, 1,890 European Americans and 1,160 African American subjects and combined the results with previously published results from the Diabetes Genetics Initiative (DGI) on 3,024 Scandinavians. We selected 43 variants in 19 regions for follow-up in 5,586 Danish individuals and compared the results to a genome-wide study on obesity-related traits from the GIANT consortium. In total, 29 variants, some correlated, in 11 chromosomal regions reached a genome-wide significance threshold of P < 1.6 × 10−7. This includes previously identified variants close to or in the FTO, MC4R, BDNF and SH2B1 genes, in addition to variants at seven loci not previously connected with obesity.
Nature Genetics | 2007
Valgerdur Steinthorsdottir; Gudmar Thorleifsson; Inga Reynisdottir; Rafn Benediktsson; Thorbjorg Jonsdottir; G. Bragi Walters; Unnur Styrkarsdottir; Solveig Gretarsdottir; Valur Emilsson; Shyamali Ghosh; Adam Baker; Steinunn Snorradottir; Hjordis Bjarnason; Maggie C.Y. Ng; Torben Hansen; Yu Z. Bagger; Robert L. Wilensky; Muredach P. Reilly; Adebowale Adeyemo; Yuanxiu Chen; Jie Zhou; Vilmundur Gudnason; Guanjie Chen; Hanxia Huang; Kerrie Lashley; Ayo Doumatey; Wing Yee So; Ronald Cw Ma; Gitte Andersen; Knut Borch-Johnsen
We conducted a genome-wide association study for type 2 diabetes (T2D) in Icelandic cases and controls, and we found that a previously described variant in the transcription factor 7-like 2 gene (TCF7L2) gene conferred the most significant risk. In addition to confirming two recently identified risk variants, we identified a variant in the CDKAL1 gene that was associated with T2D in individuals of European ancestry (allele-specific odds ratio (OR) = 1.20 (95% confidence interval, 1.13–1.27), P = 7.7 × 10−9) and individuals from Hong Kong of Han Chinese ancestry (OR = 1.25 (1.11–1.40), P = 0.00018). The genotype OR of this variant suggested that the effect was substantially stronger in homozygous carriers than in heterozygous carriers. The ORs for homozygotes were 1.50 (1.31–1.72) and 1.55 (1.23–1.95) in the European and Hong Kong groups, respectively. The insulin response for homozygotes was approximately 20% lower than for heterozygotes or noncarriers, suggesting that this variant confers risk of T2D through reduced insulin secretion.
Nature Genetics | 2008
Anna Helgadottir; Gudmar Thorleifsson; Kristinn P. Magnusson; Solveig Gretarsdottir; Valgerdur Steinthorsdottir; Andrei Manolescu; Gregory T. Jones; Gabriel J.E. Rinkel; Jan D. Blankensteijn; Antti Ronkainen; Juha Jääskeläinen; Yoshiki Kyo; Guy M. Lenk; Natzi Sakalihasan; Konstantinos Kostulas; Anders Gottsäter; Andrea Flex; Hreinn Stefansson; Torben Hansen; Gitte Andersen; Shantel Weinsheimer; Knut Borch-Johnsen; Torben Jørgensen; Svati H. Shah; Arshed A. Quyyumi; Christopher B. Granger; Muredach P. Reilly; Harland Austin; Allan I. Levey; Viola Vaccarino
Recently, two common sequence variants on 9p21, tagged by rs10757278-G and rs10811661-T, were reported to be associated with coronary artery disease (CAD) and type 2 diabetes (T2D), respectively. We proceeded to further investigate the contributions of these variants to arterial diseases and T2D. Here we report that rs10757278-G is associated with, in addition to CAD, abdominal aortic aneurysm (AAA; odds ratio (OR) = 1.31, P = 1.2 × 10−12) and intracranial aneurysm (OR = 1.29, P = 2.5 × 10−6), but not with T2D. This variant is the first to be described that affects the risk of AAA and intracranial aneurysm in many populations. The association of rs10811661-T to T2D replicates in our samples, but the variant does not associate with any of the five arterial diseases examined. These findings extend our insight into the role of the sequence variant tagged by rs10757278-G and show that it is not confined to atherosclerotic diseases.
Nature Genetics | 2003
Solveig Gretarsdottir; Gudmar Thorleifsson; Sigridur Th. Reynisdottir; Andrei Manolescu; Sif Jonsdottir; Thorbjorg Jonsdottir; Thorunn Gudmundsdottir; Sigrun M. Bjarnadottir; Olafur B. Einarsson; Herdis M. Gudjonsdottir; Malcolm Hawkins; Gudmundur Gudmundsson; Hrefna Gudmundsdottir; Hjalti Andrason; Asta Solilja Gudmundsdottir; Matthildur Sigurdardottir; Thomas T. Chou; Joseph Nahmias; Shyamali Goss; Sigurlaug Sveinbjörnsdóttir; Einar M Valdimarsson; Finnbogi Jakobsson; Uggi Agnarsson; Vilmundur Gudnason; Gudmundur Thorgeirsson; Jürgen Fingerle; Mark E. Gurney; Daniel F. Gudbjartsson; Michael L. Frigge; Augustine Kong
We previously mapped susceptibility to stroke to chromosome 5q12. Here we finely mapped this locus and tested it for association with stroke. We found the strongest association in the gene encoding phosphodiesterase 4D (PDE4D), especially for carotid and cardiogenic stroke, the forms of stroke related to atherosclerosis. Notably, we found that haplotypes can be classified into three distinct groups: wild-type, at-risk and protective. We also observed a substantial disregulation of multiple PDE4D isoforms in affected individuals. We propose that PDE4D is involved in the pathogenesis of stroke, possibly through atherosclerosis, which is the primary pathological process underlying ischemic stroke.
The New England Journal of Medicine | 2008
Unnur Styrkarsdottir; Bjarni V. Halldórsson; Solveig Gretarsdottir; Daniel F. Gudbjartsson; G. Bragi Walters; Thorvaldur Ingvarsson; Thorbjorg Jonsdottir; Jona Saemundsdottir; Tuan V. Nguyen; Yu Z. Bagger; Jeffrey R. Gulcher; John A. Eisman; Claus Christiansen; Gunnar Sigurdsson; Augustine Kong; Unnur Thorsteinsdottir; Kari Stefansson
BACKGROUND Bone mineral density influences the risk of osteoporosis later in life and is useful in the evaluation of the risk of fracture. We aimed to identify sequence variants associated with bone mineral density and fracture. METHODS We performed a quantitative trait analysis of data from 5861 Icelandic subjects (the discovery set), testing for an association between 301,019 single-nucleotide polymorphisms (SNPs) and bone mineral density of the hip and lumbar spine. We then tested for an association between 74 SNPs (most of which were implicated in the discovery set) at 32 loci in replication sets of Icelandic, Danish, and Australian subjects (4165, 2269, and 1491 subjects, respectively). RESULTS Sequence variants in five genomic regions were significantly associated with bone mineral density in the discovery set and were confirmed in the replication sets (combined P values, 1.2x10(-7) to 2.0x10(-21)). Three regions are close to or within genes previously shown to be important to the biologic characteristics of bone: the receptor activator of nuclear factor-kappaB ligand gene (RANKL) (chromosomal location, 13q14), the osteoprotegerin gene (OPG) (8q24), and the estrogen receptor 1 gene (ESR1) (6q25). The two other regions are close to the zinc finger and BTB domain containing 40 gene (ZBTB40) (1p36) and the major histocompatibility complex region (6p21). The 1p36, 8q24, and 6p21 loci were also associated with osteoporotic fractures, as were loci at 18q21, close to the receptor activator of the nuclear factor-kappaB gene (RANK), and loci at 2p16 and 11p11. CONCLUSIONS We have discovered common sequence variants that are consistently associated with bone mineral density and with low-trauma fractures in three populations of European descent. Although these variants alone are not clinically useful in the prediction of risk to the individual person, they provide insight into the biochemical pathways underlying osteoporosis.
Nature Genetics | 2009
Unnur Styrkarsdottir; Bjarni V. Halldórsson; Solveig Gretarsdottir; Daniel F. Gudbjartsson; G. Bragi Walters; Thorvaldur Ingvarsson; Thorbjorg Jonsdottir; Jona Saemundsdottir; Steinunn Snorradottir; Tuan V. Nguyen; Peter Alexandersen; Jeffrey R. Gulcher; John A. Eisman; Claus Christiansen; Gunnar Sigurdsson; Augustine Kong; Unnur Thorsteinsdottir; Kari Stefansson
In an extended genome-wide association study of bone mineral density among 6,865 Icelanders and a follow-up in 8,510 subjects of European descent, we identified four new genome-wide significant loci. These are near the SOST gene at 17q21, the MARK3 gene at 14q32, the SP7 gene at 12q13 and the TNFRSF11A (RANK) gene at 18q21. Furthermore, nonsynonymous SNPs in the C17orf53, LRP4, ADAM19 and IBSP genes were suggestively associated with bone density.
Annals of Neurology | 2008
Solveig Gretarsdottir; Gudmar Thorleifsson; Andrei Manolescu; Unnur Styrkarsdottir; Anna Helgadottir; Andreas Gschwendtner; Konstantinos Kostulas; Steve Bevan; Thorbjorg Jonsdottir; Hjordis Bjarnason; Jona Saemundsdottir; Stefan Palsson; David O. Arnar; Hilma Holm; Gudmundur Thorgeirsson; Einar M Valdimarsson; Sigurlaug Sveinbjörnsdóttir; Christian Gieger; Klaus Berger; H-Erich Wichmann; Jan Hillert; Hugh S. Markus; Jeffrey R. Gulcher; E. Bernd Ringelstein; Augustine Kong; Martin Dichgans; Daniel F. Gudbjartsson; Unnur Thorsteinsdottir; Kari Stefansson
To find sequence variants that associate with the risk for ischemic stroke (IS), we performed a genome‐wide association study.
Nature Genetics | 2005
Solveig Gretarsdottir; Gudmar Thorleifsson; S Th Reynisdottir; Andrei Manolescu; Sif Jonsdottir; Thorbjorg Jonsdottir; Thorunn Gudmundsdottir; Sigrun M. Bjarnadottir; Olafur B. Einarsson; Herdis M. Gudjonsdottir; M Hawkins; Gudmundur Gudmundsson; Hrefna Gudmundsdottir; Hjalti Andrason; Asta Solilja Gudmundsdottir; M Sigurdardottir; Thomas T. Chou; J Nahmias; S Goss; Sigurlaug Sveinbjörnsdóttir; Einar M Valdimarsson; Finnbogi Jakobsson; Uggi Agnarsson; Vilmundur Gudnason; Gudmundur Thorgeirsson; Jürgen Fingerle; Mark E. Gurney; Daniel F. Gudbjartsson; Michael L. Frigge; Augustine Kong