Tiago Rezende Figueira
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tiago Rezende Figueira.
Antioxidants & Redox Signaling | 2013
Tiago Rezende Figueira; Mario H. Barros; Anamaria A. Camargo; Roger F. Castilho; Julio Cesar Batista Ferreira; Alicia J. Kowaltowski; Francis Sluse; Nadja C. de Souza-Pinto; Anibal E. Vercesi
Mitochondrially generated reactive oxygen species are involved in a myriad of signaling and damaging pathways in different tissues. In addition, mitochondria are an important target of reactive oxygen and nitrogen species. Here, we discuss basic mechanisms of mitochondrial oxidant generation and removal and the main factors affecting mitochondrial redox balance. We also discuss the interaction between mitochondrial reactive oxygen and nitrogen species, and the involvement of these oxidants in mitochondrial diseases, cancer, neurological, and cardiovascular disorders.
Free Radical Biology and Medicine | 2013
Juliana A. Ronchi; Tiago Rezende Figueira; Felipe G. Ravagnani; Helena C. F. Oliveira; Anibal E. Vercesi; Roger F. Castilho
NADPH is the reducing agent for mitochondrial H2O2 detoxification systems. Nicotinamide nucleotide transhydrogenase (NNT), an integral protein located in the inner mitochondrial membrane, contributes to an elevated mitochondrial NADPH/NADP(+) ratio. This enzyme catalyzes the reduction of NADP(+) at the expense of NADH oxidation and H(+) reentry to the mitochondrial matrix. A spontaneous Nnt mutation in C57BL/6J (B6J-Nnt(MUT)) mice arose nearly 3 decades ago but was only discovered in 2005. Here, we characterize the consequences of the Nnt mutation on the mitochondrial redox functions of B6J-Nnt(MUT) mice. Liver mitochondria were isolated both from an Nnt wild-type C57BL/6 substrain (B6JUnib-Nnt(W)) and from B6J-Nnt(MUT) mice. The functional evaluation of respiring mitochondria revealed major redox alterations in B6J-Nnt(MUT) mice, including an absence of transhydrogenation between NAD and NADP, higher rates of H2O2 release, the spontaneous oxidation of NADPH, the poor ability to metabolize organic peroxide, and a higher susceptibility to undergo Ca(2+)-induced mitochondrial permeability transition. In addition, the mitochondria of B6J-Nnt(MUT) mice exhibited increased oxidized/reduced glutathione ratios as compared to B6JUnib-Nnt(W) mice. Nonetheless, the maximal activity of NADP-dependent isocitrate dehydrogenase, which is a coexisting source of mitochondrial NADPH, was similar between both groups. Altogether, our data suggest that NNT functions as a high-capacity source of mitochondrial NADPH and that its functional loss due to the Nnt mutation results in mitochondrial redox abnormalities, most notably a poor ability to sustain NADP and glutathione in their reduced states. In light of these alterations, the potential drawbacks of using B6J-Nnt(MUT) mice in biomedical research should not be overlooked.
Brazilian Journal of Medical and Biological Research | 2004
Benedito Sérgio Denadai; Tiago Rezende Figueira; O.R.P. Favaro; Mauro Gonçalves
The maximal lactate steady state (MLSS) is the highest blood lactate concentration that can be identified as maintaining a steady state during a prolonged submaximal constant workload. The objective of the present study was to analyze the influence of the aerobic capacity on the validity of anaerobic threshold (AT) to estimate the exercise intensity at MLSS (MLSS intensity) during cycling. Ten untrained males (UC) and 9 male endurance cyclists (EC) matched for age, weight and height performed one incremental maximal load test to determine AT and two to four 30-min constant submaximal load tests on a mechanically braked cycle ergometer to determine MLSS and MLSS intensity. AT was determined as the intensity corresponding to 3.5 mM blood lactate. MLSS intensity was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. MLSS intensity (EC = 282.1 +/- 23.8 W; UC = 180.2 +/- 24.5 W) and AT (EC = 274.8 +/- 24.9 W; UC = 187.2 +/- 28.0 W) were significantly higher in trained group. However, there was no significant difference in MLSS between EC (5.0 +/- 1.2 mM) and UC (4.9 +/- 1.7 mM). The MLSS intensity and AT were not different and significantly correlated in both groups (EC: r = 0.77; UC: r = 0.81). We conclude that MLSS and the validity of AT to estimate MLSS intensity during cycling, analyzed in a cross-sectional design (trained x sedentary), do not depend on the aerobic capacity.
Methods of Molecular Biology | 2012
Tiago Rezende Figueira; Daniela R. Melo; Anibal E. Vercesi; Roger F. Castilho
The mitochondrial electrical membrane potential (Δψ) is the main component of the proton motive force (Δp) generated across the inner mitochondrial membrane during electron flow through the respiratory chain. Among the techniques available to assess Δψ, methods that rely on the spectrophotofluorometric responses of dyes are widely employed for whole suspensions of isolated mitochondria or permeabilized cells. Safranine is one of the dyes currently used most often for this purpose. Safranine is a lipophilic cationic dye that undergoes optical shifts upon its potential-dependent distribution between the external medium and the intramitochondrial compartment and on its stacking to inner mitochondrial membrane anionic sites. The association between the optical changes of safranine and the membrane potential allows unknown Δψ values to be estimated from an equation describing their relationship. Here, we describe the use of safranine as a fluorescent indicator of Δψ in isolated mitochondria and digitonin-permeabilized cells. We present suitable conditions to employ safranine as a Δψ indicator.
Toxicon | 2014
Mary Angela Aranda-Souza; Franco A. Rossato; Rute Alves Pereira e Costa; Tiago Rezende Figueira; Roger F. Castilho; Miriam C. Guarniere; Erika dos Santos Nunes; Luana Cassandra Breitenbach Barroso Coelho; Maria Tereza dos Santos Correia; Anibal E. Vercesi
BlL, a galactose-binding C-type lectin purified from Bothrops leucurus snake venom, exhibits anticancer activity. The current study was designed to elucidate the cellular mechanisms by which BlL induces melanoma cell death. The viabilities of B16-F10 melanoma cells and HaCaT keratinocytes treated with BlL were evaluated. Necrotic and apoptotic cell death, cytosolic Ca(2+) levels, mitochondrial Ca(2+) transport and superoxide levels were assessed in B16-F10 melanoma cells exposed to BlL. We found that treatment with BlL caused dose-dependent necrotic cell death in B16-F10 melanoma cells. Conversely, the viability of non-tumorigenic HaCaT cells was not affected by similar doses of BlL. BlL-induced B16-F10 necrosis was preceded by a significant (2-fold) increase in cytosolic calcium concentrations and a significant (3-fold) increase in mitochondrial superoxide generation. It is likely that BlL treatment triggers B16-F10 cell death via mitochondrial permeability transition (MPT) pore opening because the pharmacological MPT inhibitors bongkrekic acid and Debio 025 greatly attenuated BlL-induced cell death. Experiments evaluating mitochondrial Ca(2+) transport in permeabilized B16-F10 cells strongly supported the hypothesis that BlL rapidly stimulates cyclosporine A-sensitive Ca(2+)-induced MPT pore opening. We therefore conclude that BlL causes selective B16-F10 melanoma cell death via dysregulation of cellular Ca(2+) homeostasis and Ca(2+)-induced opening of MPT pore.
Journal of Biological Chemistry | 2016
Juliana A. Ronchi; Annelise Francisco; Luiz Augusto Corrêa Passos; Tiago Rezende Figueira; Roger F. Castilho
The forward reaction of nicotinamide nucleotide transhydrogenase (NNT) reduces NADP+ at the expense of NADH oxidation and H+ movement down the electrochemical potential across the inner mitochondrial membrane, establishing an NADPH/NADP+ ratio severalfold higher than the NADH/NAD+ ratio in the matrix. In turn, NADPH drives processes, such as peroxide detoxification and reductive biosynthesis. In this study, we generated a congenic mouse model carrying a mutated NntC57BL/6J allele from the C57BL/6J substrain. Suspensions of isolated mitochondria from Nnt+/+, Nnt+/−, and Nnt−/− mouse liver were biochemically evaluated and challenged with exogenous peroxide under different respiratory states. The respiratory substrates were also varied, and the participation of concurrent NADPH sources (i.e. isocitrate dehydrogenase-2, malic enzymes, and glutamate dehydrogenase) was assessed. The principal findings include the following: Nnt+/− and Nnt−/− exhibit ∼50% and absent NNT activity, respectively, but the activities of concurrent NADPH sources are unchanged. The lack of NNT activity in Nnt−/− mice impairs peroxide metabolism in intact mitochondria. The contribution of NNT to peroxide metabolism is decreased during ADP phosphorylation compared with the non-phosphorylating state; however, it is accompanied by increased contributions of concurrent NADPH sources, especially glutamate dehydrogenase. NNT makes a major contribution to peroxide metabolism during the blockage of mitochondrial electron transport. Interestingly, peroxide metabolism in the Nnt+/− mitochondria matched that in the Nnt+/+ mitochondria. Overall, this study demonstrates that the respiratory state and/or substrates that sustain energy metabolism markedly influence the relative contribution of NNT (i.e. varies between nearly 0 and 100%) to NADPH-dependent mitochondrial peroxide metabolism.
Revista Brasileira De Medicina Do Esporte | 2005
Benedito Sérgio Denadai; Vinícius Daniel de Araújo Ruas; Tiago Rezende Figueira
The main purpose of this study was to analyze the effect of the pedaling cadence (50 x 100 rpm) on the heart rate (HR) and the blood lactate response during incremental and constant workload exercises in active individuals. Nine active male individuals (20.9 ± 2.9 years old; 73.9 ± 6.5 kg; 1.79 ± 0.9 m) were submitted to two incremental tests, and to 6-8 constant workload tests to determine the intensity corresponding to the maximal steady state lactate (MLSS intens ) in both cadences. The maximal power (Pmax) attained during the incremental test, and the MLSS intens were significantly lower at 100 rpm (240.9 ± 12.6 W; 148.1 ± 154.W) compared to 50 rpm (263.9 ± 18.6 W; 186.1 ± 21.2 W), respectively. The HRmax did not change between cadences (50 rpm = 191.1 ± 8.8 bpm; 100 rpm = 192.6 ± 9.9 bpm). Regardless the cadence, the HRmax percentage (70, 80, 90, and 100%) determined the same lactate concentrations during the incremental test. However, when the intensity was expressed in Pmax percentage or in absolute power, the lactate and the HR values were always higher at highest cadences. The HR corresponding to MLSS intens was similar between cadences (50 rpm = 162.5 ± 9.1 bpm; 100 rpm = 160.4 ± 9.2 bpm). Based on these results, it can be conclude that regardless the cadence employed (50 x 100 rpm), the use of the HR to individualize the exercise intensity indicates similar blood lactate responses, and this relationship is also kept in the exercise of constant intensity performed at MLSS intens . On the other hand, the use of the Pmax percentages depend on the cadence used, indicating different physiological responses to a same percentage.Effects of the pedaling cadence on metabolic and cardiovascular responses during incremental and constant workload exercises in active individuals The main purpose of this study was to analyze the effect of the pedaling cadence (50 x 100 rpm) on the heart rate (HR) and the blood lactate response during incremental and constant workload exercises in active individuals. Nine active male individuals (20.9 ± 2.9 years old; 73.9 ± 6.5 kg; 1.79 ± 0.9 m) were submitted to two incremental tests, and to 6-8 constant workload tests to determine the intensity corresponding to the maximal lactate steady state (MLSS intens ) in both cadences. The maximal power (Pmax) attained during the incremental test, and the MLSS intens were significantly
Experimental Physiology | 2015
Hanan Chweih; Roger F. Castilho; Tiago Rezende Figueira
What is the central question of this study? The assessment of Ca2+ handling by isolated mitochondria can be biased by dysfunctions secondary to Ca2+‐induced mitochondrial permeability transition (MPT). As a result of this uncertainty and the differing experimental conditions between studies, the tissue and sex diversities in mitochondrial Ca2+ transport are still unsettled questions. What is the main finding and its importance? If MPT is not prevented during Ca2+ transport assays, some measured variables are biased. Accounting for the implied importance of preventing MPT, we observed substantial tissue specificities in the mitochondrial Ca2+ handling, particularly in the Ca2+ efflux pathways.
Molecular Genetics and Metabolism | 2011
Tiago Rezende Figueira; Roger F. Castilho; Ângela Saito; Helena C. F. Oliveira; Anibal E. Vercesi
Congenital analbuminemia is a rare autosomal recessive disorder characterized by a trace level of albumin in blood plasma and mild clinical symptoms. Analbuminemic patients generally present associated abnormalities, among which dyslipidemia is a hallmark. In this study, we show that mitochondria isolated from different tissues (liver, heart and brain) from 3-month-old analbuminemic rats (NAR) present a higher susceptibility to Ca(2+)-induced mitochondrial permeability transition (MPT), as assessed by either Ca(2+)-induced mitochondrial swelling, dissipation of membrane potential or mitochondrial Ca(2+) release. The Ca(2+) retention capacity of the liver mitochondria isolated from 3-month-old NAR was about 50% that of the control. Interestingly, the assessment of this variable in 21-day-old NAR indicated that the mitochondrial Ca(2+) retention capacity was preserved at this age, as compared to age-matched controls, which indicates that a reduced capacity for mitochondrial Ca(2+) retention is not a constitutive feature. The search for putative mediators of MPT sensitization in NAR revealed a 20% decrease in mitochondrial nitrosothiol content and a 30% increase in cyclophilin D expression. However, the evaluation of other variables related to mitochondrial redox status showed similar results between the controls and NAR, i.e., namely the contents of reduced mitochondrial membrane protein thiol groups and total glutathione, H(2)O(2) release rate, and NAD(P)H reduced state. We conclude that the higher expression of cyclophilin D, a major component of the MPT pore, and decreased nitrosothiol content in NAR mitochondria may underlie MPT sensitization in these animals.
web science | 2011
Camila Coelho Greco; Anderson Oliveira; Marcelo Pinto Pereira; Tiago Rezende Figueira; Vinícius Daniel de Araújo Ruas; Mauro Gonçalves; Benedito Sérgio Denadai
Greco, CC, Oliveira, AS, Pereira, MP, Figueira, TR, Ruas, VD, Gonçalves, M, and Denadai, BS. Improvements in metabolic and neuromuscular fitness after 12-week Bodypump® training. J Strength Cond Res 25(12): 3422–3431, 2011—The purpose of this study was to evaluate the effects of a 12-week group fitness training program (Bodypump®) on anthropometry, muscle strength, and aerobic fitness. Nineteen women (21.4 ± 2.0 years old) were randomly assigned to a training group (n = 9) and to a control group (n = 10). We show that this training program improved the 1 repetition maximum squats by 33.1% (p < 0.001) and the maximal isometric voluntary contraction (MVC) by 13.6% (p < 0.05). Additionally, decreases in knee extensor electromyographic activity during the MVC (30%, p < 0.01) and during the squats (15%, p < 0.05) and lunges of a simulated Bodypump® session were observed after the training. Concomitantly, blood lactate and heart rate after squats of a simulated Bodypump® session were decreased by 33 and 7% (p < 0.05), respectively. Body mass, body fat, and the running velocity at the onset of blood lactate accumulation did not change significantly in response to this training program. We conclude that Bodypump® training improves muscular strength and decreases metabolic stress during lower limb exercises. However, no significant improvements in running aerobic fitness nor in body mass and body fat were observed. Practitioners of Bodypump® training may benefit from the increased muscular strength and the decreased muscular fatigability during exercise tasks whose motor patterns are related to those involved in this training program. However, these functional gains do not seem to be transferable into running aerobic fitness.