Tianle Yuan
Goddard Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tianle Yuan.
Journal of Geophysical Research | 2009
Jiwen Fan; Tianle Yuan; Jennifer M. Comstock; Steven J. Ghan; A. Khain; L. Ruby Leung; Zhanqing Li; Vanderlei Martins; Mikhail Ovchinnikov
[1] Aerosol-cloud interaction is recognized as one of the key factors influencing cloud properties and precipitation regimes across local, regional, and global scales and remains one of the largest uncertainties in understanding and projecting future climate changes. Deep convective clouds (DCCs) play a crucial role in the general circulation, energy balance, and hydrological cycle of our climate system. The complex aerosol-DCC interactions continue to be puzzling as more ‘‘aerosol effects’’ unfold, and systematic assessment of such effects is lacking. Here we systematically assess the aerosol effects on isolated DCCs based on cloud-resolving model simulations with spectral bin cloud microphysics. We find a dominant role of vertical wind shear in regulating aerosol effects on isolated DCCs, i.e., vertical wind shear qualitatively determines whether aerosols suppress or enhance convective strength. Increasing aerosols always suppresses convection under strong wind shear and invigorates convection under weak wind shear until this effect saturates at an optimal aerosol loading. We also found that the decreasing rate of convective strength is greater in the humid air than that in the dry air when wind shear is strong. Our findings may resolve some of the seemingly contradictory results among past studies by considering the dominant effect of wind shear. Our results can provide the insights to better parameterize aerosol effects on convection by adding the factor of wind shear to the entrainment term, which could reduce uncertainties associated with aerosol effects on climate forcing.
Journal of Geophysical Research | 2007
Zhanqing Li; H. Chen; Maureen Cribb; Russell R. Dickerson; Brent N. Holben; Can Li; D. Lu; Y. Luo; Hal Maring; Guangyu Shi; Si-Chee Tsay; P. Wang; Yu-Tu Wang; Xugui Xia; Youfei Zheng; Tianle Yuan; Fengsheng Zhao
daily mean surface solar radiation by � 30–40 W m � 2 , but barely changed solar reflection at the top of the atmosphere. Aerosol loading, particle size and composition vary considerably with location and season. The MODIS AOD data from Collection 5 (C5) agree much better with ground data than earlier releases, but considerable discrepancies still exist because of treatments of aerosol SSA and surface albedo. Four methods are proposed/adopted to derive the SSA by means of remote sensing and in situ observation,
Science | 2012
Hongbin Yu; Lorraine A. Remer; Mian Chin; Huisheng Bian; Qian Tan; Tianle Yuan; Yan Zhang
Particles Without Borders Aerosols have important and often adverse impacts on atmospheric composition, air quality, and climate. However, aerosols can be transported long distances, limiting the efficacy of local regulations. Yu et al. (p. 566) used satellite data to estimate how much of the aerosol load in the atmosphere above North America originates overseas. Approximately half of the dust and pollution over North America comes from Asia, Europe, Africa, and the Middle East. Asian dust is the largest fraction of this total. Furthermore, potential increases in dust emissions in response to climate change might overwhelm any reductions in pollution from emerging Asian economies. Roughly half of all particulate matter found in the air above North America originates from sources overseas. Many types of aerosols have lifetimes long enough for their transcontinental transport, making them potentially important contributors to air quality and climate change in remote locations. We estimate that the mass of aerosols arriving at North American shores from overseas is comparable with the total mass of particulates emitted domestically. Curbing domestic emissions of particulates and precursor gases, therefore, is not sufficient to mitigate aerosol impacts in North America. The imported contribution is dominated by dust leaving Asia, not by combustion-generated particles. Thus, even a reduction of industrial emissions of the emerging economies of Asia could be overwhelmed by an increase of dust emissions due to changes in meteorological conditions and potential desertification.
Geophysical Research Letters | 2011
Tianle Yuan; Lorraine A. Remer; Kenneth E. Pickering; Hongbin Yu
Lightning activity over the West Pacific Ocean east of the Philippines is usually much less frequent than over the nearby maritime continents. However, in 2005 the Lightning Imaging Sensor (LIS) aboard the TRMM satellite observed anomalously high lightning activity in that area. In the same year the Moderate resolution Imaging Spectroradiometer (MODIS) measured anomalously high aerosol loading. The high aerosol loading was traced to volcanic activity, and not to any factor linked to meteorology, disentangling the usual convolution between aerosols and meteorology. We show that in general lightning activity is tightly correlated with aerosol loadings at both inter-annual and biweekly time scales. We estimate that a approximately 60% increase in aerosol loading leads to more than 150% increase in lightning flashes. Aerosols increase lightning activity through modification of cloud microphysics. Cloud ice particle sizes are reduced and cloud glaciation is delayed to colder temperature when aerosol loading is increased. TRMM precipitation radar measurements indicate that anomalously high aerosol loading is associated with enhanced cloud mixed phase activity and invigorated convection over the maritime ocean. These observed associations between aerosols, cloud microphysics, morphology and lightning activity are not related to meteorological variables or ENSO events. The results have important implications for understanding the variability of lightning and resulting aerosol-chemistry interactions.
Geophysical Research Letters | 2015
Hongbin Yu; Mian Chin; Tianle Yuan; Huisheng Bian; Lorraine A. Remer; Joseph M. Prospero; Ali H. Omar; David M. Winker; Yuekui Yang; Yan Zhang; Zhibo Zhang; Chun Zhao
The productivity of the Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of long-range transported African dust is recognized as a potentially important but poorly quantified source of phosphorus. This study provides a first multiyear satellite-based estimate of dust deposition into the Amazon Basin using three-dimensional (3-D) aerosol measurements over 2007–2013 from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The 7 year average of dust deposition into the Amazon Basin is estimated to be 28 (8–48) Tg a−1 or 29 (8–50) kg ha−1 a−1. The dust deposition shows significant interannual variation that is negatively correlated with the prior-year rainfall in the Sahel. The CALIOP-based multiyear mean estimate of dust deposition matches better with estimates from in situ measurements and model simulations than a previous satellite-based estimate does. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3-D nature of CALIOP aerosol measurements. The imported dust could provide about 0.022 (0.006–0.037) Tg P of phosphorus per year, equivalent to 23 (7–39) g P ha−1 a−1 to fertilize the Amazon rainforest. This out-of-basin phosphorus input is comparable to the hydrological loss of phosphorus from the basin, suggesting an important role of African dust in preventing phosphorus depletion on timescales of decades to centuries.
Journal of the Atmospheric Sciences | 2016
Barry H. Lynn; A. Khain; Jian Wen Bao; Sara A. Michelson; Tianle Yuan; Guy Kelman; Daniel Rosenfeld; Jacob Shpund; Nir Benmoshe
AbstractHurricane Irene (2011) moved northward along the eastern coast of the United States and was expected to cause severe wind and flood damage. However, the hurricane weakened much faster than was predicted. Moreover, the minimum pressure in Irene occurred, atypically, about 40 h later than the time of maximum wind speed. Possible reasons for Irene’s weakening and the time shift between maximum wind and minimum central pressure were studied in simulations using WRF with spectral bin microphysics (WRF-SBM) with 1-km grid spacing and ocean coupling. Both ocean coupling and aerosol distribution/concentration were found to influence Irene’s development. Without ocean coupling or with ocean coupling and uniform aerosol distribution, the simulated maximum wind occurred at about the same time as the minimum pressure. With ocean coupling and nonuniform spatial aerosol distributions caused by aerosols from the Saharan air layer (band) and the continental United States, the maximum wind occurred about 40 h befo...
Geophysical Research Letters | 2018
Tianle Yuan; Lazaros Oreopoulos; Steven Platnick; Kerry Meyer
Abstract Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large‐scale patterns of SST and low‐cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST‐LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST‐LCC feedback. In many current climate models, our analyses suggest that SST‐LCC feedback strength is too weak compared to observations. Modeled local SST‐LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST‐LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST‐LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST‐LCC feedback.
Journal of Geophysical Research | 2008
Tianle Yuan; Zhanqing Li; Renyi Zhang; Jiwen Fan
Atmospheric Chemistry and Physics | 2011
Tianle Yuan; Lorraine A. Remer; Hongbin Yu
Remote Sensing of Environment | 2015
Hongbin Yu; Mian Chin; Huisheng Bian; Tianle Yuan; Joseph M. Prospero; Ali H. Omar; Lorraine A. Remer; David M. Winker; Yuekui Yang; Yan Zhang; Zhibo Zhang