Tiffany Doucette
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tiffany Doucette.
Genes & Development | 2011
Krishna P.L. Bhat; Katrina Salazar; Veerakumar Balasubramaniyan; Khalida Wani; Lindsey Heathcock; Faith Hollingsworth; Johanna D. James; Joy Gumin; Kristin Diefes; Se Hoon Kim; Alice Turski; Yasaman Azodi; Yuhui Yang; Tiffany Doucette; Howard Colman; Erik P. Sulman; Frederick F. Lang; Ganesh Rao; Sjef Copray; Brian Vaillant; Kenneth D. Aldape
Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.
Cancer Research | 2013
Jun Wei; Fei Wang; Ling Yuan Kong; Shuo Xu; Tiffany Doucette; Sherise D. Ferguson; Yuhui Yang; Kayla McEnery; Krishan Jethwa; Olsi Gjyshi; Wei Qiao; Nicholas B. Levine; Frederick F. Lang; Ganesh Rao; Gregory N. Fuller; George A. Calin; Amy B. Heimberger
miRNAs (miR) have been shown to modulate critical gene transcripts involved in tumorigenesis, but their role in tumor-mediated immunosuppression is largely unknown. On the basis of miRNA gene expression in gliomas using tissue microarrays, in situ hybridization, and molecular modeling, miR-124 was identified as a lead candidate for modulating STAT3 signaling, a key pathway mediating immunosuppression in the tumor microenvironment. miR-124 is absent in all grades and pathologic types of gliomas. Upon upregulating miR-124 in glioma cancer stem cells (gCSC), the STAT3 pathway was inhibited, and miR-124 reversed gCSC-mediated immunosuppression of T-cell proliferation and induction of forkhead box P3 (Foxp3)(+) regulatory T cells (Treg). Treatment of T cells from immunosuppressed glioblastoma patients with miR-124 induced marked effector response including upregulation of interleukin (IL)-2, IFN-γ, and TNF-α. Both systemic administration of miR-124 or adoptive miR-124-transfected T-cell transfers exerted potent anti-glioma therapeutic effects in clonotypic and genetically engineered murine models of glioblastoma and enhanced effector responses in the local tumor microenvironment. These therapeutic effects were ablated in both CD4(+)- and CD8(+)-depleted mice and nude mouse systems, indicating that the therapeutic effect of miR-124 depends on the presence of a T-cell-mediated antitumor immune response. Our findings highlight the potential application of miR-124 as a novel immunotherapeutic agent for neoplasms and serve as a model for identifying miRNAs that can be exploited as immunotherapeutics.
Cancer immunology research | 2013
Tiffany Doucette; Ganesh Rao; Arvind Rao; Li Shen; Kenneth D. Aldape; Jun Wei; Kristine Dziurzynski; Mark R. Gilbert; Amy B. Heimberger
Doucette and colleagues analyzed The Cancer Genome Atlas glioblastoma database and found differential expression of distinct glioma antigens and immunosuppressive and effector genes among the glioblastoma subtypes, which may influence responses to immune therapeutic strategies in patients. Purpose: The molecular heterogeneity of glioblastoma has been well recognized and has resulted in the generation of molecularly defined subtypes. These subtypes (classical, neural, mesenchymal, and proneural) are associated with particular signaling pathways and differential patient survival. Less understood is the correlation between these glioblastoma subtypes with immune system effector responses, immunosuppression, and tumor-associated and tumor-specific antigens. The role of the immune system is becoming increasingly relevant to treatment as new agents are being developed to target mediators of tumor-induced immunosuppression, which is well documented in glioblastoma. Experimental Design: To ascertain the association of antigen expression, immunosuppression, and effector response genes within glioblastoma subtypes, we analyzed the Cancer Genome Atlas (TCGA) glioblastoma database. Results: We found an enrichment of genes within the mesenchymal subtype that are reflective of antitumor proinflammatory responses, including both adaptive and innate immunity and immunosuppression. Conclusions: These results indicate that distinct glioma antigens and immune genes show differential expression between glioblastoma subtypes and this may influence responses to immunotherapeutic strategies in patients depending on the subtype of glioblastoma they harbor. Cancer Immunol Res; 1(2); 112–22. ©2013 AACR.
Journal of the National Cancer Institute | 2014
Shuo Xu; Jun Wei; Fei Wang; Ling Yuan Kong; Xiao Yang Ling; Edjah K. Nduom; Konrad Gabrusiewicz; Tiffany Doucette; Yuhui Yang; Nasser K. Yaghi; Virginia R. Fajt; Jonathan M. Levine; Wei Qiao; Xin Gang Li; Frederick F. Lang; Ganesh Rao; Gregory N. Fuller; George A. Calin; Amy B. Heimberger
BACKGROUND The immune therapeutic potential of microRNAs (miRNAs) in the context of tumor-mediated immune suppression has not been previously described for monocyte-derived glioma-associated macrophages, which are the largest infiltrating immune cell population in glioblastomas and facilitate gliomagenesis. METHODS An miRNA microarray was used to compare expression profiles between human glioblastoma-infiltrating macrophages and matched peripheral monocytes. The effects of miR-142-3p on phenotype and function of proinflammatory M1 and immunosuppressive M2 macrophages were determined. The therapeutic effect of miR-142-3p was ascertained in immune-competent C57BL/6J mice harboring intracerebral GL261 gliomas and in genetically engineered Ntv-a mice bearing high-grade gliomas. Student t test was used to evaluate the differences between ex vivo datasets. Survival was analyzed with the log-rank test and tumor sizes with linear mixed models and F test. All statistical tests were two-sided. RESULTS miR-142-3p was the most downregulated miRNA (approximately 4.95-fold) in glioblastoma-infiltrating macrophages. M2 macrophages had lower miR-142-3p expression relative to M1 macrophages (P = .03). Overexpression of miR-142-3p in M2 macrophages induced selective modulation of transforming growth factor beta receptor 1, which led to subsequent preferential apoptosis in the M2 subset (P = .01). In vivo miR-142-3p administration resulted in glioma growth inhibition (P = .03, n = 5) and extended median survival (miR-142-3p-treated C57BL/6J mice vs scramble control: 31 days vs 23.5 days, P = .03, n = 10; miR-142-3p treated Ntv-a mice vs scramble control: 32 days vs 24 days, P = .03, n = 9), with an associated decrease in infiltrating macrophages (R (2) = .303). CONCLUSIONS These data indicate a unique role of miR-142-3p in glioma immunity by modulating M2 macrophages through the transforming growth factor beta signaling pathway.
Clinical Cancer Research | 2010
Ling Yuan Kong; Adam Wu; Tiffany Doucette; Jun Wei; Waldemar Priebe; Gregory N. Fuller; Wei Qiao; Raymond Sawaya; Ganesh Rao; Amy B. Heimberger
Purpose: Preclinical murine model systems used for the assessment of therapeutics have not been predictive of human clinical responses, primarily because their clonotypic nature does not recapitulate the heterogeneous biology and immunosuppressive mechanisms of humans. Relevant model systems with mice that are immunologically competent are needed to evaluate the efficacy of therapeutic agents, especially immunotherapeutics. Experimental Design: Using the RCAS/Ntv-a system, mice were engineered to coexpress platelet-derived growth factor B (PDGF-B) receptor + B-cell lymphoma 2 (Bcl-2) under the control of the glioneuronal specific Nestin promoter. The degree and type of tumor-mediated immunosuppression were determined in these endogenously arising gliomas on the basis of the presence of macrophages and regulatory T cells. The immunotherapeutic agent WP1066 was tested in vivo to assess therapeutic efficacy and immunomodulation. Results: Ntv-a mice were injected with RCAS vectors to express PDGF-B + Bcl-2, resulting in both low- and high-grade gliomas. Consistent with observations in human high-grade gliomas, mice with high-grade gliomas also developed a marked intratumoral influx of macrophages that was influenced by tumor signal transducer and activator of transduction 3 (STAT3) expression. The presence of intratumoral F4/80 macrophages was a negative prognosticator for long-term survival. In mice coexpressing PDGF-B + Bcl-2that were treated with WP1066, there was 55.5% increase in median survival time (P < 0.01), with an associated inhibition of intratumoral STAT3 and macrophages. Conclusions: Although randomization is necessary for including mice in a therapeutic trial, these murine model systems are more suitable for testing therapeutics, especially immunotherapeutics, in the context of translational studies. Clin Cancer Res; 16(23); 5722–33. ©2010 AACR.
Neurosurgery | 2012
Tiffany Doucette; Yuhui Yang; Carolyn A. Pedone; John Kim; Adrian Dubuc; Paul D. Northcott; Michael D. Taylor; Daniel W. Fults; Ganesh Rao
BACKGROUND: A significant number of medulloblastomas (MBs) originate from abnormal activation of the sonic hedgehog/patched (SHH/PTC) signaling pathway. Although p53 deficiency enhances tumor formation in mice, inactivation of the p53 gene is seen in a minority of MBs. Wild-type p53-induced phosphatase 1 (WIP1) downregulates p53 expression and has been shown to be overexpressed in MBs. OBJECTIVE: We tested the hypothesis that overexpression of WIP1 enhances tumor formation in an SHH-dependent model of MB. METHODS: We used the RCAS/Ntv-a system to study the effect of WIP1 in vitro and in vivo. We transfected A375-TVA cells with RCAS-WIP1 and then exposed these cells to cisplatin to determine the effect on p53 expression. We modeled ectopic WIP1 expression independently and in combination with SHH in the cerebella of newborn mice to assess the effect on tumor formation. Mice were observed for 12 weeks or until neurological symptoms developed. The brains were examined for tumor formation. RESULTS: A375-TVA cells infected with RCAS-WIP1 demonstrated reduced p53 expression after exposure to cisplatin compared with controls. We detected tumors in 12 of 35 mice (34%) injected with RCAS-WIP1 and RCAS-SHH. Tumors were detected in 3 of 40 mice (8%) injected with RCAS-SHH alone. The difference in tumor formation rates was significant (&khgr;2 test, P = < .01). Tumors did not form in mice injected with RCAS-WIP1 alone. CONCLUSION: We show that ectopic expression of WIP1 cooperates with SHH to enhance formation of MB, although it is insufficient to induce tumors independently. Our results verify the role of WIP1 in MB formation and provide a crucial link to the inactivation of p53 in MBs.
International Journal of Cancer | 2011
Tiffany Doucette; Yuhui Yang; Wei Zhang; Gregory N. Fuller; Dima Suki; Daniel W. Fults; Ganesh Rao
A significant subset of gliomas arises after activation of the proproliferative platelet‐derived growth factor (PDGF) pathway. The progression of low‐grade gliomas to more malignant tumors may be due to oncogenic cellular programs combining with those suppressing apoptosis. Antiapoptotic genes are overexpressed in a variety of cancers, and the antiapoptotic gene, BCL2, is associated with treatment resistance and tumor recurrence in gliomas. However, the impact of antiapoptotic gene expression to tumor formation and progression is unclear. We overexpressed Bcl‐2 in a PDGFB‐dependent mouse model of oligodendroglioma, a common glioma subtype, to assess its effect in vivo. We hypothesized that the antiapoptotic effect would complement the proproliferative effect of PDGFB to promote tumor formation and progression to anaplastic oligodendroglioma (AO). Here, we show that coexpression of PDGFB and Bcl‐2 results in a higher overall tumor formation rate compared to PDGFB alone. Coexpression of PDGFB and Bcl‐2 promotes progression to AO with prominent foci of necrosis, a feature of high‐grade gliomas. Median tumor latency was shorter in mice injected with PDGFB and Bcl‐2 compared to those injected with PDGFB alone. Although independent expression of Bcl‐2 was insufficient to induce tumors, suppression of apoptosis (detected by cleaved caspase‐3 expression) was more pronounced in AOs induced by PDGFB and Bcl‐2 compared to those induced by PDGFB alone. Tumor cell proliferation (detected by phosphohistone H3 activity) was also more robust in high‐grade tumors induced by PDGFB and Bcl‐2. Our results indicate that suppressed apoptosis enhances oligodendroglioma formation and engenders a more malignant phenotype.
Oncotarget | 2017
Loyola V. Gressot; Tiffany Doucette; Yuhui Yang; Gregory N. Fuller; Ganiraju C. Manyam; Arvind Rao; Khatri Latha; Ganesh Rao
Gliomas, the most common primary brain tumor in humans, include a spectrum of disease. High-grade gliomas (HGG), such as glioblastoma, may arise from low-grade gliomas (LGG) that have a more indolent course. The process of malignant transformation (MT) of LGG to HGG is poorly understood but likely involves the activation of signaling programs that suppress apoptosis. We previously showed that Survivin (BIRC5) plays a role in malignant progression of glioma. Here, we investigated the role of the remaining members of the Inhibitors of Apoptosis (IAP) family on promoting MT in glioma. Utilizing expression data from the cancer genome atlas (TCGA), we identified BIRC3 as a key facilitator of MT from LGG to HGG. TCGA HGGs with high expression of BIRC 3 demonstrated a survival disadvantage and expression levels of BIRC3 were also significantly higher in TCGA HGG compared to TCGA LGG cases. We validated our findings from TCGA by using matched human specimens to show that BIRC expression is increased in HGG compared to their precursor LGG lesions. Using a unique murine model of glioma, we show that overexpression of BIRC3 promotes higher grade glioma and significantly reduces tumor-free survival in mice.
Journal of Translational Medicine | 2016
Takashi Shingu; Lindsay Holmes; Verlene Henry; Qianghu Wang; Khatri Latha; Anupama E. Gururaj; Laura A. Gibson; Tiffany Doucette; Frederick F. Lang; Ganesh Rao; Liang Yuan; Erik P. Sulman; Nicholas Farrell; Waldemar Priebe; Kenneth R. Hess; Yaoqi A. Wang; Jian Hu; Oliver Bögler
BackgroundThe majority of glioblastomas have aberrant receptor tyrosine kinase (RTK)/RAS/phosphoinositide 3 kinase (PI3K) signaling pathways and malignant glioma cells are thought to be addicted to these signaling pathways for their survival and proliferation. However, recent studies suggest that monotherapies or inappropriate combination therapies using the molecular targeted drugs have limited efficacy possibly because of tumor heterogeneities, signaling redundancy and crosstalk in intracellular signaling network, indicating necessity of rationale and methods for efficient personalized combination treatments. Here, we evaluated the growth of colonies obtained from glioma tumor-initiating cells (GICs) derived from glioma sphere culture (GSC) in agarose and examined the effects of combination treatments on GICs using targeted drugs that affect the signaling pathways to which most glioma cells are addicted.MethodsHuman GICs were cultured in agarose and treated with inhibitors of RTKs, non-receptor kinases or transcription factors. The colony number and volume were analyzed using a colony counter, and Chou-Talalay combination indices were evaluated. Autophagy and apoptosis were also analyzed. Phosphorylation of proteins was evaluated by reverse phase protein array and immunoblotting.ResultsIncreases of colony number and volume in agarose correlated with the Gompertz function. GICs showed diverse drug sensitivity, but inhibitions of RTK and RAF/MEK or PI3K by combinations such as EGFR inhibitor and MEK inhibitor, sorafenib and U0126, erlotinib and BKM120, and EGFR inhibitor and sorafenib showed synergy in different subtypes of GICs. Combination of erlotinib and sorafenib, synergistic in GSC11, induced apoptosis and autophagic cell death associated with suppressed Akt and ERK signaling pathways and decreased nuclear PKM2 and β-catenin in vitro, and tended to improve survival of nude mice bearing GSC11 brain tumor. Reverse phase protein array analysis of the synergistic treatment indicated involvement of not only MEK and PI3K signaling pathways but also others associated with glucose metabolism, fatty acid metabolism, gene transcription, histone methylation, iron transport, stress response, cell cycle, and apoptosis.ConclusionInhibiting RTK and RAF/MEK or PI3K could induce synergistic cytotoxicity but personalization is necessary. Examining colonies in agarose initiated by GICs from each patient may be useful for drug sensitivity testing in personalized cancer therapy.
Neuro-oncology | 2014
Tiffany Doucette; Khatri Latha; Yuhui Yang; Gregory N. Fuller; Arvind Rao; Ganesh Rao
BACKGROUND The influence of survivin isoforms on outcome in glioblastoma is poorly understood. We analyzed the dominant anti-apoptotic transcript variants of survivin using expression data and modeled them in vivo to determine their impact on glioma formation and progression. METHODS Using data from low- and high-grade glioma knowledge bases, we expressed the anti-apoptotic isoforms of survivin (transcript variants 1 and 2) in vivo using the RCAS/Ntv-a model of murine glioma. RESULTS In low-grade gliomas, survivin RNA expression was increased in 22 of 167 (13.2%) of cases and was associated with shortened survival (P = .005). Survivin RNA was preferentially expressed in proneural (PN) relative to mesenchymal high-grade gliomas (P < .0001). In proneural gliomas, survivin was expressed in 94 of 141 (67%) of cases and was associated with shorter disease-free survival (P = .04). In a platelet-derived growth factor subunit B-dependent murine model of PN glioma, ectopic expression of variant 1 yielded tumors in 28 of 30 (93%) of mice, of which 25% were high-grade tumors, whereas ectopic expression of variant 2 yielded tumors in 27 of 28 (96%), of which 81% were high-grade tumors (P < .0001). Microvascular proliferation was significantly more prominent (P < .0001), and tumor-free survival was shorter in mice with variant 2 than variant 1-derived tumors (P = .01). CONCLUSIONS Survivin expression in low-grade gliomas is associated with poor survival and is preferentially expressed in PN gliomas. Compared with variant 1, variant 2 was associated with poorer survival and promoted malignant progression, angiogenesis, and shorter tumor-free survival in the PN murine model. Inhibiting survivin transcript variant 2, rather than variant 1 (the common isoform), may be an effective treatment strategy for glioma.