Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiffany Wu is active.

Publication


Featured researches published by Tiffany Wu.


The Journal of Neuroscience | 2011

Amyloid-β/Fyn–Induced Synaptic, Network, and Cognitive Impairments Depend on Tau Levels in Multiple Mouse Models of Alzheimer's Disease

Erik D. Roberson; Brian Halabisky; Jong W. Yoo; Jinghua Yao; Jeannie Chin; Fengrong Yan; Tiffany Wu; Patricia Hamto; Nino Devidze; Gui-Qiu Yu; Jorge J. Palop; Jeffrey L. Noebels; Lennart Mucke

Alzheimers disease (AD), the most common neurodegenerative disorder, is a growing public health problem and still lacks effective treatments. Recent evidence suggests that microtubule-associated protein tau may mediate amyloid-β peptide (Aβ) toxicity by modulating the tyrosine kinase Fyn. We showed previously that tau reduction prevents, and Fyn overexpression exacerbates, cognitive deficits in human amyloid precursor protein (hAPP) transgenic mice overexpressing Aβ. However, the mechanisms by which Aβ, tau, and Fyn cooperate in AD-related pathogenesis remain to be fully elucidated. Here we examined the synaptic and network effects of this pathogenic triad. Tau reduction prevented cognitive decline induced by synergistic effects of Aβ and Fyn. Tau reduction also prevented synaptic transmission and plasticity deficits in hAPP mice. Using electroencephalography to examine network effects, we found that tau reduction prevented spontaneous epileptiform activity in multiple lines of hAPP mice. Tau reduction also reduced the severity of spontaneous and chemically induced seizures in mice overexpressing both Aβ and Fyn. To better understand these protective effects, we recorded whole-cell currents in acute hippocampal slices from hAPP mice with and without tau. hAPP mice with tau had increased spontaneous and evoked excitatory currents, reduced inhibitory currents, and NMDA receptor dysfunction. Tau reduction increased inhibitory currents and normalized excitation/inhibition balance and NMDA receptor-mediated currents in hAPP mice. Our results indicate that Aβ, tau, and Fyn jointly impair synaptic and network function and suggest that disrupting the copathogenic relationship between these factors could be of therapeutic benefit.


Cell | 2011

Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration.

Daniel Zwilling; Shao-Yi Huang; Korrapati V. Sathyasaikumar; Francesca M. Notarangelo; Paolo Guidetti; Hui-Qiu Wu; Jason Lee; Jennifer Truong; Yaisa Andrews-Zwilling; Eric W. Hsieh; Jamie Y. Louie; Tiffany Wu; Kimberly Scearce-Levie; Christina Patrick; Anthony Adame; Flaviano Giorgini; Saliha Moussaoui; Grit Laue; Arash Rassoulpour; Gunnar Flik; Yadong Huang; Joseph M. Muchowski; Eliezer Masliah; Robert Schwarcz; Paul J. Muchowski

Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimers and Huntingtons diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimers disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntingtons disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.


The Journal of Neuroscience | 2009

Neprilysin Overexpression Inhibits Plaque Formation But Fails to Reduce Pathogenic Aβ Oligomers and Associated Cognitive Deficits in Human Amyloid Precursor Protein Transgenic Mice

William J. Meilandt; Moustapha Cissé; Kaitlyn Ho; Tiffany Wu; Luke Esposito; Kimberly Scearce-Levie; Irene H. Cheng; Gui-Qiu Yu; Lennart Mucke

The accumulation of amyloid-β (Aβ) peptides in the brain of patients with Alzheimers disease (AD) may arise from an imbalance between Aβ production and clearance. Overexpression of the Aβ-degrading enzyme neprilysin in brains of human amyloid precursor protein (hAPP) transgenic mice decreases overall Aβ levels and amyloid plaque burdens. Because AD-related synaptic and cognitive deficits appear to be more closely related to Aβ oligomers than to plaques, it is important to determine whether increased neprilysin activity also diminishes the levels of pathogenic Aβ oligomers and related neuronal deficits in vivo. To address this question, we crossed hAPP transgenic mice with neprilysin transgenic mice and analyzed their offspring. Neprilysin overexpression reduced soluble Aβ levels by 50% and effectively prevented early Aβ deposition in the neocortex and hippocampus. However, it did not reduce levels of Aβ trimers and Aβ*56 or improve deficits in spatial learning and memory. The differential effect of neprilysin on plaques and oligomers suggests that neprilysin-dependent degradation of Aβ affects plaques more than oligomers and that these structures may form through distinct assembly mechanisms. Neprilysins inability to prevent learning and memory deficits in hAPP mice may be related to its inability to reduce pathogenic Aβ oligomers. Reduction of Aβ oligomers will likely be required for anti-Aβ treatments to improve cognitive functions.


The Journal of Neuroscience | 2008

Enkephalin Elevations Contribute to Neuronal and Behavioral Impairments in a Transgenic Mouse Model of Alzheimer's Disease

William J. Meilandt; Gui-Qiu Yu; Jeannie Chin; Erik D. Roberson; Jorge J. Palop; Tiffany Wu; Kimberly Scearce-Levie; Lennart Mucke

The enkephalin signaling pathway regulates various neural functions and can be altered by neurodegenerative disorders. In Alzheimers disease (AD), elevated enkephalin levels may reflect compensatory processes or contribute to cognitive impairments. To differentiate between these possibilities, we studied transgenic mice that express human amyloid precursor protein (hAPP) and amyloid-β (Aβ) peptides in neurons and exhibit key aspects of AD. Met-enkephalin levels in neuronal projections from the entorhinal cortex and dentate gyrus (brain regions important for memory that are affected in early stages of AD) were increased in hAPP mice, as were preproenkephalin mRNA levels. Genetic manipulations that exacerbate or prevent excitotoxicity also exacerbated or prevented the enkephalin alterations. In human AD brains, enkephalin levels in the dentate gyrus were also increased. In hAPP mice, enkephalin elevations correlated with the extent of Aβ-dependent neuronal and behavioral alterations, and memory deficits were reduced by irreversible blockade of μ-opioid receptors with the antagonist β-funaltrexamine. We conclude that enkephalin elevations may contribute to cognitive impairments in hAPP mice and possibly in humans with AD. The therapeutic potential of reducing enkephalin production or signaling merits further exploration.


Neuropsychopharmacology | 2013

GluN2B Antagonism Affects Interneurons and Leads to Immediate and Persistent Changes in Synaptic Plasticity, Oscillations, and Behavior

Jesse E. Hanson; Martin Weber; William J. Meilandt; Tiffany Wu; Tom Luu; Lunbin Deng; Mehrdad Shamloo; Morgan Sheng; Kimberly Scearce-Levie; Qiang Zhou

Although antagonists to GluN2B-containing N-methyl-D-aspartate receptors (NMDARs) have been widely considered to be neuroprotective under certain pathological conditions, their immediate and lasting impacts on synaptic, circuit, and cognitive functions are poorly understood. In hippocampal slices, we found that the GluN2B-selective antagonist Ro25-6981 (Ro25) reduced synaptic NMDAR responses and consequently neuronal output in a subpopulation of GABAergic interneurons, but not pyramidal neurons. Consistent with these effects, Ro25 reduced GABAergic responses in pyramidal neurons and hence could affect circuit functions by altering the excitation/inhibition balance in the brain. In slices from Ts65Dn mice, a Down syndrome model with excess inhibition and cognitive impairment, acutely applied Ro25-rescued long-term potentiation (LTP) and gamma oscillation deficits, whereas prolonged dosing induced persistent rescue of LTP. In contrast, Ro25 did not impact LTP in wild-type (wt) mice but reduced gamma oscillations both acutely and following prolonged treatment. Although acute Ro25 treatment impaired memory performance in wt mice, memory deficits in Ts65Dn mice were unchanged. Thus, GluN2B–NMDARs contribute to the excitation/inhibition balance via impacts on interneurons, and blocking GluN2B–NMDARs can alter functions that depend on this balance, including synaptic plasticity, gamma oscillations, and memory. That prolonged GluN2B antagonism leads to persistent changes in synaptic and circuit functions, and that the influence of GluN2B antagonism differs between wt and disease model mice, provide critical insight into the therapeutic potential and possible liabilities of GluN2B antagonists.


The Journal of Neuroscience | 2014

A Death Receptor 6-Amyloid Precursor Protein Pathway Regulates Synapse Density in the Mature CNS But Does Not Contribute to Alzheimer's Disease-Related Pathophysiology in Murine Models

Dara Y. Kallop; William J. Meilandt; Alvin Gogineni; Courtney Easley-Neal; Tiffany Wu; Adrian M. Jubb; Murat Yaylaoglu; Mehrdad Shamloo; Marc Tessier-Lavigne; Kimberly Scearce-Levie; Robby M. Weimer

Recent studies implicate death receptor 6 (DR6) in an amyloid precursor protein (APP)-dependent pathway regulating developmental axon pruning, and in a pruning pathway operating during plastic rearrangements in adult brain. DR6 has also been suggested to mediate toxicity in vitro of Aβ peptides derived from APP. Given the link between APP, Aβ, and Alzheimers disease (AD), these findings have raised the possibility that DR6 contributes to aspects of neurodegeneration in AD. To test this possibility, we have used mouse models to characterize potential function(s) of DR6 in the adult CNS and in AD-related pathophysiology. We show that DR6 is broadly expressed within the adult CNS and regulates the density of excitatory synaptic connections onto pyramidal neurons in a genetic pathway with APP. DR6 knock-out also gives rise to behavioral abnormalities, some of which are similar to those previously documented in APP knock-out animals. However, in two distinct APP transgenic models of AD, we did not observe any alteration in the formation of amyloid plaques, gliosis, synaptic loss, or cognitive behavioral deficits with genetic deletion of DR6, though we did observe a transient reduction in the degree of microglial activation in one model. Our results support the view that DR6 functions with APP to modulate synaptic density in the adult CNS, but do not provide evidence for a role of DR6 in the pathophysiology of AD.


Scientific Reports | 2017

BACE1 across species: a comparison of the in vivo consequences of BACE1 deletion in mice and rats

Martin Weber; Tiffany Wu; William J. Meilandt; Sara L. Dominguez; Hilda Solanoy; Janice Maloney; Hai Ngu; Miriam Baca; Chung Kung; Lisa Lima; Timothy K. Earr; Daniel Fleck; Shannon D. Shields; William F. Forrest; Oded Foreman; Søren Warming; Ryan J. Watts; Kimberly Scearce-Levie

Assessing BACE1 (β-site APP cleaving enzyme 1) knockout mice for general health and neurological function may be useful in predicting risks associated with prolonged pharmacological BACE1 inhibition, a treatment approach currently being developed for Alzheimer’s disease. To determine whether BACE1 deletion-associated effects in mice generalize to another species, we developed a novel Bace1−/− rat line using zinc-finger nuclease technology and compared Bace1−/− mice and rats with their Bace1+/+ counterparts. Lack of BACE1 was confirmed in Bace1−/− animals from both species. Removal of BACE1 affected startle magnitude, balance beam performance, pain response, and nerve myelination in both species. While both mice and rats lacking BACE1 have shown increased mortality, the increase was smaller and restricted to early developmental stages for rats. Bace1−/− mice and rats further differed in body weight, spontaneous locomotor activity, and prepulse inhibition of startle. While the effects of species and genetic background on these phenotypes remain difficult to distinguish, our findings suggest that BACE1’s role in myelination and some sensorimotor functions is consistent between mice and rats and may be conserved in other species. Other phenotypes differ between these models, suggesting that some effects of BACE1 inhibition vary with the biological context (e.g. species or background strain).


Alzheimers & Dementia | 2006

P4-314 : Overexpression of neprilysin decreases neuronal and behavioral impairments in human amyloid precursor protein transgenic mice

William J. Meilandt; Tiffany Wu; Gui-Qiu Yu; Kimberly Scearce-Levie; Lennart Mucke

brain slice cultures. Amyloid plaques in organotypic brain slice cultures derived from either APPSL PS1mut mice or tissue from AD patients were stained using thioflavin S. A tissue incubation chamber was designed for chronic treatment of amyloid plaques in living brain tissue with sheet breaker peptides. The plaque dissolving properties of the sheet breakers were measured up to 24 hours using confocal laser scanning microscopy. Changes in plaque density were visualized after application of the betasheet breaker peptides RVVIA, LPYFD and RIIGL in living tissue. After incubation of 24 hours plaque reductions of up to 50% were established dependent on sheet breaker composition and concentration. These results indicate the promising potency of amyloid sheet breaker to combat plaque density in ‘living’ brain tissue of AD patients. The experimental set up using postmortem Alzheimer brain tissue provides a powerful tool for measuring amyloid dissolving properties of newly developed anti-amyloid compounds.


Science | 2007

Reducing Endogenous Tau Ameliorates Amyloid ß-Induced Deficits in an Alzheimer's Disease Mouse Model

Erik D. Roberson; Kimberly Scearce-Levie; Jorge J. Palop; Fengrong Yan; Irene H. Cheng; Tiffany Wu; Hilary Gerstein; Gui-Qiu Yu; Lennart Mucke


Biological Psychiatry | 2013

GLUN2B Antagonism Affects Interneurons and Leads to Immediate and Persistent Changes in Synaptic Plasticity, Oscillations and Behavior

Jesse E. Hanson; Martin Weber; William J. Meilandt; Tiffany Wu; Tom Luu; Lunbin Deng; Mehrdad Shamlo; Morgan Sheng; Kimberly Scearce-Levie; Qiang Zhou

Collaboration


Dive into the Tiffany Wu's collaboration.

Top Co-Authors

Avatar

Lennart Mucke

University of California

View shared research outputs
Top Co-Authors

Avatar

Gui-Qiu Yu

University of California

View shared research outputs
Top Co-Authors

Avatar

Erik D. Roberson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jorge J. Palop

University of California

View shared research outputs
Top Co-Authors

Avatar

Anthony Adame

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge