Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tilden P. Meyers is active.

Publication


Featured researches published by Tilden P. Meyers.


Bulletin of the American Meteorological Society | 2001

FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities

Dennis D. Baldocchi; Eva Falge; Lianhong Gu; R. J. Olson; David Y. Hollinger; Steven W. Running; Peter M. Anthoni; Ch. Bernhofer; Kenneth J. Davis; Robert H. Evans; Jose D. Fuentes; Allen H. Goldstein; Gabriel G. Katul; Beverly E. Law; Xuhui Lee; Yadvinder Malhi; Tilden P. Meyers; William Munger; Walter Oechel; Kim Pilegaard; Hans Peter Schmid; Riccardo Valentini; Shashi B. Verma; Timo Vesala; Kell B. Wilson; S. C. Wofsy

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO 2 exchange of temperate broadleaved forests increases by about 5.7 g C m −2 day −1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.


Agricultural and Forest Meteorology | 2002

Energy balance closure at FLUXNET sites

Kell B. Wilson; Allen H. Goldstein; Eva Falge; Marc Aubinet; Dennis D. Baldocchi; Paul Berbigier; Christian Bernhofer; R. Ceulemans; Han Dolman; Christopher B. Field; Achim Grelle; A. Ibrom; Beverly E. Law; Andrew S. Kowalski; Tilden P. Meyers; John Moncrieff; Russell K. Monson; Walter Oechel; John Tenhunen; Riccardo Valentini; Shashi B. Verma

A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site-years in FLUXNET, a network of eddy covariance sites measuring long-term carbon and energy fluxes in contrasting ecosystems and climates. Energy balance closure was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat (LE)) against available energy (net radiation, less the energy stored) and by solving for the energy balance ratio, the ratio of turbulent energy fluxes to available energy. These methods indicate a general lack of closure at most sites, with a mean imbalance in the order of 20%. The imbalance was prevalent in all measured vegetation types and in climates ranging from Mediterranean to temperate and arctic. There were no clear differences between sites using open and closed path infrared gas analyzers. At a majority of sites closure improved with turbulent intensity (friction velocity), but lack of total closure was still prevalent under most conditions. The imbalance was greatest during nocturnal periods. The results suggest that estimates of the scalar turbulent fluxes of sensible and LE are underestimated and/or that available energy is overestimated. The implications on interpreting long-term CO2 fluxes at FLUXNET sites depends on whether the imbalance results primarily from general errors associated


Agricultural and Forest Meteorology | 2000

Correcting eddy-covariance flux underestimates over a grassland

Tracy E. Twine; William P. Kustas; John M. Norman; David R. Cook; Paul R. Houser; Tilden P. Meyers; John H. Prueger; Patrick J. Starks; M. L. Wesely

Independent measurements of the major energy balance flux components are not often consistent with the principle of conservation of energy. This is referred to as a lack of closure of the surface energy balance. Most results in the literature have shown the sum of sensible and latent heat fluxes measured by eddy covariance to be less than the difference between net radiation and soil heat fluxes. This under-measurement of sensible and latent heat fluxes by eddy-covariance instruments has occurred in numerous field experiments and among many different manufacturers of instruments. Four eddy-covariance systems consisting of the same models of instruments were set up side-by-side during the Southern Great Plains 1997 Hydrology Experiment and all systems under-measured fluxes by similar amounts. One of these eddy-covariance systems was collocated with three other types of eddy-covariance systems at different sites; all of these systems under-measured the sensible and latent-heat fluxes. The net radiometers and soil heat flux plates used in conjunction with the eddy-covariance systems were calibrated independently and measurements of net radiation and soil heat flux showed little scatter for various sites. The 10% absolute uncertainty in available energy measurements was considerably smaller than the systematic closure problem in the surface energy budget, which varied from 10 to 30%. When available-energy measurement errors are known and modest, eddy-covariance measurements of sensible and latent heat fluxes should be adjusted for closure. Although the preferred method of energy balance closure is to maintain the Bowen‐ratio, the method for obtaining closure appears to be less important than assuring that eddy-covariance measurements are consistent with conservation of energy. Based on numerous measurements over a sorghum canopy, carbon dioxide fluxes, which are measured by eddy covariance, are underestimated by the same factor as eddy covariance evaporation measurements when energy balance closure is not achieved. Published by Elsevier Science B.V.


Ecology | 1988

Measuring Biosphere‐Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods

Dennis D. Baldocchi; Bruce B. Hincks; Tilden P. Meyers

Ecologists are expected to play an important role in future studies of the biosphere/atmosphere exchange of materials associated with the major biogeochemical cycles and climate. Most studies of material exchange reported in the ecological literature have relied on chamber techniques. Micrometeorological techniques provide an alternative means of measuring these exchange rates and are expected to be used more often in future ecological studies, since they have many advantages over the chamber techniques. In this article we will provide an overview of micrometeorological theory and the different micrometeorological techniques available to make flux measurements.


Water Air and Soil Pollution | 1987

A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities

B. B. Hicks; Dennis D. Baldocchi; Tilden P. Meyers; R. P. Hosker; Detlef R. Matt

Because there is no simple device capable of measuring the dry deposition rates of small particles and trace gases directly, much current activity is focused on the use of an inferential technique. In this method, measurements of atmospheric concentration (C) of selected chemical species are coupled with evaluations of appropriate deposition velocity (Vd) to yield estimates of dry deposition rate from their product. Difficulties arise concerning the ability to measure C, and especially regarding the poor knowledge of Vd for many species. A multiple resistance routine for deriving deposition velocities is presented here. Current knowledge of biological processes is incorporated into a first-generation lsbig leaf’ model; formulations of resistances appropriate for describing individual leaves are combined to simulate the canopy as a whole. The canopy resistance is combined with estimates of aerodynamic and boundary-layer resistances to approximate the total resistance to transfer, from which deposition velocity is then computed. Special emphasis is given to the influence of the diurnal cycle, to the way in which the various transfer resistances can be inferred from routine data, and to the role of canopy factors (e.g., leaf area index, wetness, temperature response, and sunshade fractions).


Agricultural and Forest Meteorology | 1998

On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation : a perspective

Dennis D. Baldocchi; Tilden P. Meyers

How eco-physiological, biogeochemical and micrometeorological theory can be used to compute biosphere–atmosphere, trace gas exchange rates is discussed within the framework of a process model. The accuracy of the theory is tested by comparing computations of mass and energy flux densities (water vapor, sensible heat, CO2 and ozone) against eddy covariance measurements over five distinct canopies (wheat, potato and soybean crops and a temperate broad-leaved and a boreal conifer forest). Once tested, the theory is used to evaluate how interactions between climate and vegetation might influence leaf area and photosynthetic capacity and, in turn, alter energy balance partitioning and the transfer rates of CO2 and other trace gases over vegetation canopies. Model parameters, derived from biogeochemical and eco-physiological principles, enabled the model to estimate rates of mass and energy exchange with reasonable fidelity. In particular, the theory reproduced the magnitudes and distinct diurnal patterns associated with mass and energy fluxes over a spectrum of vegetation types. Model sensitivity tests revealed that variations in leaf area index and photosynthetic capacity interacted to increase rates of evaporation and carbon dioxide and pollutant uptake, greatly, and in a curvilinear manner. Finally, we conclude that the assignment of many model parameters according to plant functional type has much potential for use in global and regional scale ecosystem, climate and biogeochemistry models.


Boundary-Layer Meteorology | 2000

Correction of eddy-covariance measurements incorporating both advective effects and density fluxes.

Kyaw Tha Paw U; Dennis D. Baldocchi; Tilden P. Meyers; Kell B. Wilson

Equations are presented to correct eddy-covariancemeasurements for both fluctuations in density andnon-zero mean advection, induced by convergence ordivergence of flow, and spatial source/sinkinhomogeneity, under steady-state and transientconditions. This correction collapses to theWebb–Pearman–Leuning expression ifthe mean vertical velocity is zero, and formally addsthe Webb–Pearman–Leuning expression to the correctionssuggested by Lee for conditions ofnon-zero vertical velocity and source/sink and meanscalar horizontal homogeneity. The equation requiresmeasurement of the mean vertical gradients of thescalar concentration of interest (air temperature,humidity, CO2) as well as an accurateestimation of the mean vertical velocity, in additionto the vertical eddy covariance of the scalar. Simplemethods for the approximation of sensor tilt andcomplex terrain flow angle are presented, to allowestimation of non-zero mean vertical velocities. Theequations are applied to data from a maize crop and aforest to give examples of when the correction issignificant. In addition, a term for thethermodynamic expansion energy associated with watervapour flux is derived, which implies that the sonictemperature derived sensible heat flux will accuratelyinclude this contribution.


BioScience | 2008

The 2007 Eastern US Spring Freeze: Increased Cold Damage in a Warming World?

Lianhong Gu; Paul J. Hanson; W. Mac Post; Dale P. Kaiser; Bai Yang; Ramakrishna Nemani; Stephen G. Pallardy; Tilden P. Meyers

ABSTRACT Plant ecologists have long been concerned with a seemingly paradoxical scenario in the relationship between plant growth and climate change: warming may actually increase the risk of plant frost damage. The underlying hypothesis is that mild winters and warm, early springs, which are expected to occur as the climate warms, may induce premature plant development, resulting in exposure of vulnerable plant tissues and organs to subsequent late-season frosts. The 2007 spring freeze in the eastern United States provides an excellent opportunity to evaluate this hypothesis and assess its large-scale consequences. In this article, we contrast the rapid prefreeze phenological advancement caused by unusually warm conditions with the dramatic postfreeze setback, and report complicated patterns of freeze damage to plants. The widespread devastation of crops and natural vegetation occasioned by this event demonstrates the need to consider large fluctuations in spring temperatures a real threat to terrestrial ecosystem structure and functioning in a warming climate.


Bulletin of the American Meteorological Society | 2012

How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed

Roy Rasmussen; Bruce Baker; John Kochendorfer; Tilden P. Meyers; Scott Landolt; Alexandre P. Fischer; Jenny Black; Julie M. Thériault; Paul A. Kucera; David J. Gochis; Craig D. Smith; Rodica Nitu; Mark E. Hall; Kyoko Ikeda; Ethan D. Gutmann

This paper presents recent efforts to understand the relative accuracies of different instrumentation and gauges with various windshield configurations to measure snowfall. Results from the National Center for Atmospheric Research (NCAR) Marshall Field Site will be highlighted. This site hosts a test bed to assess various solid precipitation measurement techniques and is a joint collaboration between the National Oceanic and Atmospheric Administration (NOAA), NCAR, the National Weather Service (NWS), and Federal Aviation Administration (FAA). The collaboration involves testing new gauges and other solid precipitation measurement techniques in comparison with World Meteorological Organization (WMO) reference snowfall measurements. This assessment is critical for any ongoing studies and applications, such as climate monitoring and aircraft deicing, that rely on accurate and consistent precipitation measurements.


Nature | 2011

Observed increase in local cooling effect of deforestation at higher latitudes

Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan G. Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert G. Drake; Allen H. Goldstein; Lianhong Gu; Gabriel G. Katul; Thomas E. Kolb; Beverly E. Law; Hank A. Margolis; Tilden P. Meyers; Russell K. Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf M. Staebler; Steven C. Wofsy; Lei Zhao

Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth’s surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo–sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models.

Collaboration


Dive into the Tilden P. Meyers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lianhong Gu

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shashi B. Verma

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Y. Hollinger

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Mark Heuer

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew E. Suyker

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

John Kochendorfer

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge