Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy C. Boire is active.

Publication


Featured researches published by Timothy C. Boire.


Journal of Materials Chemistry B | 2014

ROS-cleavable proline oligomer crosslinking of polycaprolactone for pro-angiogenic host response

Sue Hyun Lee; Timothy C. Boire; Jung Bok Lee; Mukesh K. Gupta; Angela L. Zachman; Rutwik Rath; Hak-Joon Sung

A reactive oxygen species (ROS)-degradable scaffold is fabricated by crosslinking biocompatible, hydrolytically-degradable poly(ε-caprolactone) (PCL) with a ROS-degradable oligoproline peptide, KP7K. The ROS-mediated degradability triggers favorable host responses of the scaffold including improved cell infiltration and angiogenesis in vivo, indicating its unique advantages for tissue engineering applications.


Acta Biomaterialia | 2015

Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications

Timothy C. Boire; Mukesh K. Gupta; Angela L. Zachman; Sue Hyun Lee; Daniel A. Balikov; Kwangho Kim; Leon M. Bellan; Hak-Joon Sung

UNLABELLED Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37°C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. STATEMENT OF SIGNIFICANCE With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise combinatorial approaches that enable optimization of mechanical, SM, and cellular responses for a particular application. In this study, a new class of thermo-responsive SMPs is created in a robust, facile manner with readily tunable material properties. Materials exhibit excellent, switch-like shape recovery near body temperature and promising biocompatibility for minimally-invasive vascular applications.


ACS Applied Materials & Interfaces | 2016

Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors.

Mengya Li; Andrew S. Westover; Rachel Carter; Landon Oakes; Nitin Muralidharan; Timothy C. Boire; Hak-Joon Sung; Cary L. Pint

A key parameter in the operation of an electrochemical double-layer capacitor is the voltage window, which dictates the device energy density and power density. Here we demonstrate experimental evidence that π-π stacking at a carbon-ionic liquid interface can modify the operation voltage of a supercapacitor device by up to 30%, and this can be recovered by steric hindrance at the electrode-electrolyte interface introduced by poly(ethylene oxide) polymer electrolyte additives. This observation is supported by Raman spectroscopy, electrochemical impedance spectroscopy, and differential scanning calorimetry that each independently elucidates the signature of π-π stacking between imidazole groups in the ionic liquid and the carbon surface and the role this plays to lower the energy barrier for charge transfer at the electrode-electrolyte interface. This effect is further observed universally across two separate ionic liquid electrolyte systems and is validated by control experiments showing an invariant electrochemical window in the absence of a carbon-ionic liquid electrode-electrolyte interface. As interfacial or noncovalent interactions are usually neglected in the mechanistic picture of double-layer capacitors, this work highlights the importance of understanding chemical properties at supercapacitor interfaces to engineer voltage and energy capability.


Advanced Healthcare Materials | 2015

Current progress in nanotechnology applications for diagnosis and treatment of kidney diseases.

Sue Hyun Lee; Jung Bok Lee; Min Soo Bae; Daniel A. Balikov; Amy Hwang; Timothy C. Boire; Il Keun Kwon; Hak-Joon Sung; Jae Won Yang

Significant progress has been made in nanomedicine, primarily in the form of nanoparticles, for theranostic applications to various diseases. A variety of materials, both organic and inorganic, have been used to develop nanoparticles with promise to achieve improved efficacy in medical applications as well as reduced systemic side effects compared to current standard of care medical practices. In particular, this article highlights the recent development and application of nanoparticles for diagnosing and treating nephropathologies.


ACS Applied Materials & Interfaces | 2017

Tunable Surface Repellency Maintains Stemness and Redox Capacity of Human Mesenchymal Stem Cells

Daniel A. Balikov; Spencer W. Crowder; Timothy C. Boire; Jung Bok Lee; Mukesh K. Gupta; Aidan M. Fenix; Holley N. Lewis; Caitlyn M. Ambrose; Philip A. Short; Chang Soo Kim; Dylan T. Burnette; Matthew A. Reilly; N. Sanjeeva Murthy; Mi-Lan Kang; Won Shik Kim; Hak-Joon Sung

Human bone marrow derived mesenchymal stem cells (hMSCs) hold great promise for regenerative medicine due to their multipotent differentiation capacity and immunomodulatory capabilities. Substantial research has elucidated mechanisms by which extracellular cues regulate hMSC fate decisions, but considerably less work has addressed how material properties can be leveraged to maintain undifferentiated stem cells. Here, we show that synthetic culture substrates designed to exhibit moderate cell-repellency promote high stemness and low oxidative stress-two indicators of naïve, healthy stem cells-in commercial and patient-derived hMSCs. Furthermore, the material-mediated effect on cell behavior can be tuned by altering the molar percentage (mol %) and/or chain length of poly(ethylene glycol) (PEG), the repellant block linked to hydrophobic poly(ε-caprolactone) (PCL) in the copolymer backbone. Nano- and angstrom-scale characterization of the cell-material interface reveals that PEG interrupts the adhesive PCL domains in a chain-length-dependent manner; this prevents hMSCs from forming mature focal adhesions and subsequently promotes cell-cell adhesions that require connexin-43. This study is the first to demonstrate that intrinsic properties of synthetic materials can be tuned to regulate the stemness and redox capacity of hMSCs and provides new insight for designing highly scalable, programmable culture platforms for clinical translation.


Advanced Healthcare Materials | 2016

Copolymer-Mediated Cell Aggregation Promotes a Proangiogenic Stem Cell Phenotype In Vitro and In Vivo

Spencer W. Crowder; Daniel A. Balikov; Timothy C. Boire; Devin McCormack; Jung Bok Lee; Mukesh K. Gupta; Melissa C. Skala; Hak-Joon Sung

Material-induced cell aggregation drives a proangiogenic expression profile. Copolymer substrates containing cell-repellent and cell-adhesive domains force the aggregation of human mesenchymal stem cells, which results in enhanced tubulogenesis in vitro and stabilization of vasculature in vivo. These findings can be used to design instructive biomaterial scaffolds for clinical use.


Acta Biomaterialia | 2016

Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications ☆ ☆☆

Timothy C. Boire; Mukesh K. Gupta; Angela L. Zachman; Sue Hyun Lee; Daniel A. Balikov; Kwangho Kim; Leon M. Bellan; Hak-Joon Sung

UNLABELLED Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. STATEMENT OF SIGNIFICANCE With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise combinatorial approaches that enable optimization of mechanical, SM, and cellular responses for a particular application. In this study, a new class of thermo-responsive SMPs is created in a robust, facile manner with readily tunable material properties. Materials exhibit excellent, switch-like shape recovery near body temperature and promising biocompatibility for minimally-invasive vascular applications.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Femtosecond laser-patterned nanopore arrays for surface-mediated peptide treatment

Angela L. Zachman; Lucas H. Hofmeister; Lino Costa; Timothy C. Boire; Yu-Shik Hwang; William H. Hofmeister; Hak-Joon Sung

UNLABELLED The major goal of this study was to create easy-to-use, reusable substrates capable of storing any peptides or bioactive molecules for a desired period of time until cells uptake them without the need for bioactive molecule or peptide-specific techniques. Nanopore arrays of uniform size and distribution were machined into fused silica substrates using femtosecond laser ablation and loaded with peptides by simple adsorption. The nanopore substrates were validated by examining the effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) loaded nanopores on macrophage phagocytosis and intracellular production of reactive oxygen species (ROS) with and without the pro-inflammatory lipopolysaccharide (LPS). Our results demonstrated that nanopores were generated in a uniform array fashion. Ac-SDKP peptides were stably stored in nanopores and internalized by macrophages. Significant reductions in ROS production and phagocytosis in macrophages were observed over control substrates, even in combination with LPS stimulation, indicating that loading Ac-SDKP peptides in pores significantly improved the anti-inflammatory effects. FROM THE CLINICAL EDITOR This team of scientists intended to create easy-to-use, reusable substrates for storing peptides or bioactive molecules for a desired period of time before cellular uptake occurs, and without the need for bioactive molecule or peptide-specific techniques. They demonstrate the successful generation of nanopores in a uniform array that stably stores Ac-SDKP peptides in the nanopores. When peptides were internalized by macrophages, significant reductions in ROS production and phagocytosis were observed, indicating improved anti-inflammatory effects.


Nanotheranostics | 2017

Recent strategies to design vascular theranostic nanoparticles

Mukesh Kumer Gupta; Yunki Lee; Timothy C. Boire; Jung-Bok Lee; Won Shik Kim; Hak-Joon Sung

Vascular disease is a leading cause of death and disability worldwide. Current surgical intervention and treatment options for vascular diseases have exhibited limited long-term success, emphasizing the need to develop advanced treatment paradigms for early detection and more effective treatment of dysfunctional cells in a specific blood vessel lesion. Advances in targeted nanoparticles mediating cargo delivery enables more robust prevention, screening, diagnosis, and treatment of vascular disorders. In particular, nanotheranostics integrates diagnostic imaging and therapeutic function into a single agent, and is an emerging platform towards more effective and localized vascular treatment. This review article highlights recent advances and current challenges associated with the utilization of targeted nanoparticles for real-time diagnosis and treatment of vascular diseases. Given recent developments, nanotheranostics offers great potential to serve as an effective platform for targeted, localized, and personalized vascular treatment.


Macromolecular Rapid Communications | 2016

Biomaterial-Based Approaches to Address Vein Graft and Hemodialysis Access Failures.

Timothy C. Boire; Daniel A. Balikov; Yunki Lee; Christy M. Guth; Joyce Cheung-Flynn; Hak-Joon Sung

Veins used as grafts in heart bypass or as access points in hemodialysis exhibit high failure rates, thereby causing significant morbidity and mortality for patients. Interventional or revisional surgeries required to correct these failures have been met with limited success and exorbitant costs, particularly for the US Centers for Medicare & Medicaid Services. Vein stenosis or occlusion leading to failure is primarily the result of neointimal hyperplasia. Systemic therapies have achieved little long-term success, indicating the need for more localized, sustained, biomaterial-based solutions. Numerous studies have demonstrated the ability of external stents to reduce neointimal hyperplasia. However, successful results from animal models have failed to translate to the clinic thus far, and no external stent is currently approved for use in the US to prevent vein graft or hemodialysis access failures. This review discusses current progress in the field, design considerations, and future perspectives for biomaterial-based external stents. More comparative studies iteratively modulating biomaterial and biomaterial-drug approaches are critical in addressing mechanistic knowledge gaps associated with external stent application to the arteriovenous environment. Addressing these gaps will ultimately lead to more viable solutions that prevent vein graft and hemodialysis access failures.

Collaboration


Dive into the Timothy C. Boire's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge