Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kondala R. Atkuri is active.

Publication


Featured researches published by Kondala R. Atkuri.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal

Sonia Salzano; Paola Checconi; Eva-Maria Hanschmann; Christopher Horst Lillig; Lucas D. Bowler; Philippe Chan; David Vaudry; Manuela Mengozzi; Lucia Coppo; Sandra Sacre; Kondala R. Atkuri; Bita Sahaf; Leonard A. Herzenberg; Leonore A. Herzenberg; Lisa Mullen; Pietro Ghezzi

Significance Inflammation often complicates diseases associated with oxidative stress. This study shows that inflammatory macrophages release proteins with specific forms of cysteine oxidation to disulfides, particularly glutathionylation. Redox proteomics identified peroxiredoxin 2 (PRDX2) as a protein released in glutathionylated form by inflammation both in vivo and in vitro. Extracellular PRDX2 then triggers the production of TNF-α. These data indicate that redox-dependent mechanisms, in an oxidative cascade, can induce inflammation. The mechanism by which oxidative stress induces inflammation and vice versa is unclear but is of great importance, being apparently linked to many chronic inflammatory diseases. We show here that inflammatory stimuli induce release of oxidized peroxiredoxin-2 (PRDX2), a ubiquitous redox-active intracellular enzyme. Once released, the extracellular PRDX2 acts as a redox-dependent inflammatory mediator, triggering macrophages to produce and release TNF-α. The oxidative coupling of glutathione (GSH) to PRDX2 cysteine residues (i.e., protein glutathionylation) occurs before or during PRDX2 release, a process central to the regulation of immunity. We identified PRDX2 among the glutathionylated proteins released in vitro by LPS-stimulated macrophages using mass spectrometry proteomic methods. Consistent with being part of an inflammatory cascade, we find that PRDX2 then induces TNF-α release. Unlike classical inflammatory cytokines, PRDX2 release does not reflect LPS-mediated induction of mRNA or protein synthesis; instead, PRDX2 is constitutively present in macrophages, mainly in the reduced form, and is released in the oxidized form on LPS stimulation. Release of PRDX2 is also observed in human embryonic kidney cells treated with TNF-α. Importantly, the PRDX2 substrate thioredoxin (TRX) is also released along with PRDX2, enabling an oxidative cascade that can alter the –SH status of surface proteins and thereby facilitate activation via cytokine and Toll-like receptors. Thus, our findings suggest a model in which the release of PRDX2 and TRX from macrophages can modify the redox status of cell surface receptors and enable induction of inflammatory responses. This pathway warrants further exploration as a potential novel therapeutic target for chronic inflammatory diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Importance of culturing primary lymphocytes at physiological oxygen levels

Kondala R. Atkuri; Leonard A. Herzenberg; Anna-Kaisa Niemi; Tina M. Cowan; Leonore A. Herzenberg

Although studies with primary lymphocytes are almost always conducted in CO2 incubators maintained at atmospheric oxygen levels (atmosO2; 20%), the physiological oxygen levels (physO2; 5%) that cells encounter in vivo are 2–4 times lower. We show here that culturing primary T cells at atmosO2 significantly alters the intracellular redox state (decreases intracellular glutathione, increases oxidized intracellular glutathione), whereas culturing at physO2 maintains the intracellular redox environment (intracellular glutathione/oxidized intracellular glutathione) close to its in vivo status. Furthermore, we show that CD3/CD28-induced T cell proliferation (based on proliferation index and cell yield) is higher at atmosO2 than at physO2. This apparently paradoxical finding, we suggest, may be explained by two additional findings with CD3/CD28-stimulated T cells: (i) the intracellular NO (iNO) levels are higher at physO2 than at atmosO2; and (ii) the peak expression of CD69 is significantly delayed and more sustained at physO2 that at atmosO2. Because high levels of intracellular NO and sustained CD69 tend to down-regulate T cell responses in vivo, the lower proliferative T cell responses at physO2 likely reflect the in vitro operation of the natural in vivo regulatory mechanisms. Thus, we suggest caution in culturing primary lymphocytes at atmosO2 because the requisite adaptation to nonphysiological oxygen levels may seriously skew T cell responses, particularly after several days in culture.


Cancer Research | 2006

MYC Can Induce DNA Breaks In vivo and In vitro Independent of Reactive Oxygen Species

Suma Ray; Kondala R. Atkuri; Debabrita Deb-Basu; Adam S. Adler; Howard Y. Chang; Leonore A. Herzenberg; Dean W. Felsher

MYC overexpression is thought to initiate tumorigenesis by inducing cellular proliferation and growth and to be restrained from causing tumorigenesis by inducing cell cycle arrest, cellular senescence, and/or apoptosis. Here we show that MYC can induce DNA breaks both in vitro and in vivo independent of increased production of reactive oxygen species (ROS). We provide an insight into the specific circumstances under which MYC generates ROS in vitro and propose a possible mechanism. We found that MYC induces DNA double-strand breaks (DSBs) independent of ROS production in murine lymphocytes in vivo as well as in normal human foreskin fibroblasts (NHFs) in vitro in normal (10%) serum, as measured by gammaH2AX staining. However, NHFs cultured in vitro in low serum (0.05%) and/or ambient oxygen saturation resulted in ROS-associated oxidative damage and DNA single-strand breaks (SSBs), as measured by Ape-1 staining. In NHFs cultured in low versus normal serum, MYC induced increased expression of CYP2C9, a gene product well known to be associated with ROS production. Specific inhibition of CYP2C9 by small interfering RNA was shown to partially inhibit MYC-induced ROS production. Hence, MYC overexpression can induce ROS and SSBs under some conditions, but generally induces widespread DSBs in vivo and in vitro independent of ROS production.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia

Kondala R. Atkuri; Tina M. Cowan; Tony Kwan; Angelina Ng; Leonard A. Herzenberg; Leonore A. Herzenberg; Gregory M. Enns

Disorders affecting mitochondria, including those that directly affect the respiratory chain function or result from abnormalities in branched amino acid metabolism (organic acidemias), have been shown to be associated with impaired redox balance. Almost all of the evidence underlying this conclusion has been obtained from studies on patient biopsies or animal models. Since the glutathione (iGSH) system provides the main protection against oxidative damage, we hypothesized that untreated oxidative stress in individuals with mitochondrial dysfunction would result in chronic iGSH deficiency. We confirm this hypothesis here in studies using high-dimensional flow cytometry (Hi-D FACS) and biochemical analysis of freshly obtained blood samples from patients with mitochondrial disorders or organic acidemias. T lymphocyte subsets, monocytes and neutrophils from organic acidemia and mitochondrial patients who were not on antioxidant supplements showed low iGSH levels, whereas similar subjects on antioxidant supplements showed normal iGSH. Measures of iROS levels in blood were insufficient to reveal the chronic oxidative stress in untreated patients. Patients with organic acidemias showed elevated plasma protein carbonyls, while plasma samples from all patients tested showed hypocitrullinemia. These findings indicate that measurements of iGSH in leukocytes may be a particularly useful biomarker to detect redox imbalance in mitochondrial disorders and organic acidemias, thus providing a relatively non-invasive means to monitor disease status and response to therapies. Furthermore, studies here suggest that antioxidant therapy may be useful for relieving the chronic oxidative stress that otherwise occurs in patients with mitochondrial dysfunction.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Glut1-mediated glucose transport regulates HIV infection

Séverine Loisel-Meyer; Louise Swainson; Marco Craveiro; Leal Oburoglu; Cédric Mongellaz; Caroline Costa; Marion Martinez; François-Loïc Cosset; Jean-Luc Battini; Leonard A. Herzenberg; Leonore A. Herzenberg; Kondala R. Atkuri; Marc Sitbon; Sandrina Kinet; Els Verhoeyen; Naomi Taylor

Cell cycle entry is commonly considered to positively regulate HIV-1 infection of CD4 T cells, raising the question as to how quiescent lymphocytes, representing a large portion of the viral reservoir, are infected in vivo. Factors such as the homeostatic cytokine IL-7 have been shown to render quiescent T cells permissive to HIV-1 infection, presumably by transiently stimulating their entry into the cell cycle. However, we show here that at physiological oxygen (O2) levels (2–5% O2 tension in lymphoid organs), IL-7 stimulation generates an environment permissive to HIV-1 infection, despite a significantly attenuated level of cell cycle entry. We identify the IL-7–induced increase in Glut1 expression, resulting in augmented glucose uptake, as a key factor in rendering these T lymphocytes susceptible to HIV-1 infection. HIV-1 infection of human T cells is abrogated either by impairment of Glut1 signal transduction or by siRNA-mediated Glut1 down-regulation. Consistent with this, we show that the susceptibility of human thymocyte subsets to HIV-1 infection correlates with Glut1 expression; single-round infection is markedly higher in the Glut1-expressing double-positive thymocyte population than in any of the Glut1-negative subsets. Thus, our studies reveal the Glut1-mediated metabolic pathway as a critical regulator of HIV-1 infection in human CD4 T cells and thymocytes.


Arthritis & Rheumatism | 2011

Nerve growth factor: A key local regulator in the pathogenesis of inflammatory arthritis.

Siba P. Raychaudhuri; Smriti K. Raychaudhuri; Kondala R. Atkuri; Leonard A. Herzenberg; Leonore A. Herzenberg

OBJECTIVE The effect of nerve growth factor (NGF) and its receptor (NGFR) in inflammatory diseases is a novel research field. The purpose of this study was to investigate the role of NGF/NGFR in human T cell subpopulations and fibroblast-like synovial cells (FLS) and examine its pathophysiologic significance in psoriatic arthritis (PsA) and rheumatoid arthritis (RA). METHODS Expression of NGF/NGFR was examined in synovial fluid (SF), FLS, peripheral blood (PB)-derived T cells, and SF-derived T cells from patients with PsA, RA, and osteoarthritis (OA). NGF levels were determined by enzyme-linked immunosorbent assay. NGF-induced T cell/FLS proliferation was examined by MTT assay. Low-affinity (p75)/high-affinity (TrkA) NGFR expression was determined by high-dimensional fluorescence-activated cell sorting. A monochlorobimane assay was used to determine the effect of NGF on T cell survival. RESULTS Levels of NGF were higher in SF samples from PsA and RA patients as compared to SF samples from OA patients. NGF-induced FLS proliferation was more marked in PsA and RA patients. TrkA was up-regulated on activated SF T cells from PsA (mean ± SD 22 ± 6.2%) and RA (8 ± 1.3%) patients, whereas in SF samples from OA patients, TrkA+CD3+ T cells were not detectable. NGF induced the proliferation of PB T cells, induced the phosphorylation of Akt in activated T cells, and consistent with known pAkt activity, inhibited tumor necrosis factor α-induced cell death in these T cells. CONCLUSION Based on our findings, we propose a model in which NGF secreted by FLS into PsA and RA synovium promotes the survival of activated autoreactive T cells as well as FLS proliferation. Thus, NGF has the potential to sustain the chronic inflammatory cascades of arthritis of autoimmune origin.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Culturing of human peripheral blood cells reveals unsuspected lymphocyte responses relevant to HIV disease

Bita Sahaf; Kondala R. Atkuri; Kartoosh Heydari; Meena Malipatlolla; Jay Rappaport; Emmanuel G. Régulier; Leonard A. Herzenberg; Leonore A. Herzenberg

Recombinant HIV-Tat (Tat) induces extensive apoptosis in peripheral blood mononuclear cells (PBMCs) cultured in typical CO2 incubators, which are equilibrated with air (21% O2). However, as we show here, Tat apoptosis induction fails in PBMCs cultured at physiological oxygen levels (5% O2). Under these conditions, Tat induces PBMCs to divide, efficiently primes them for HIV infection, and supports virus production by the infected cells. Furthermore, Tat takes only 2 h to prime PBMCs under these conditions. In contrast, PHA/IL-2, which is widely used to prime cells for HIV infection, takes 2–3 days. These findings strongly recommend culturing primary cells at physiological oxygen levels. In addition, they suggest HIV-Tat as a key regulator of HIV disease progression.


PLOS ONE | 2014

Degree of Glutathione Deficiency and Redox Imbalance Depend on Subtype of Mitochondrial Disease and Clinical Status

Gregory M. Enns; Tereza Moore; Anthony Le; Kondala R. Atkuri; Monisha K. Shah; Kristina Cusmano-Ozog; Anna-Kaisa Niemi; Tina M. Cowan

Mitochondrial disorders are associated with decreased energy production and redox imbalance. Glutathione plays a central role in redox signaling and protecting cells from oxidative damage. In order to understand the consequences of mitochondrial dysfunction on in vivo redox status, and to determine how this varies by mitochondrial disease subtype and clinical severity, we used a sensitive tandem mass spectrometry assay to precisely quantify whole blood reduced (GSH) and oxidized (GSSG) glutathione levels in a large cohort of mitochondrial disorder patients. Glutathione redox potential was calculated using the Nernst equation. Compared to healthy controls (n = 59), mitochondrial disease patients (n = 58) as a group showed significant redox imbalance (redox potential −251 mV±9.7, p<0.0001) with an increased level of oxidation by ∼9 mV compared to controls (−260 mV±6.4). Underlying this abnormality were significantly lower whole blood GSH levels (p = 0.0008) and GSH/GSSG ratio (p = 0.0002), and significantly higher GSSG levels (p<0.0001) in mitochondrial disease patients compared to controls. Redox potential was significantly more oxidized in all mitochondrial disease subgroups including Leigh syndrome (n = 15), electron transport chain abnormalities (n = 10), mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (n = 8), mtDNA deletion syndrome (n = 7), mtDNA depletion syndrome (n = 7), and miscellaneous other mitochondrial disorders (n = 11). Patients hospitalized in metabolic crisis (n = 7) showed the greatest degree of redox imbalance at −242 mV±7. Peripheral whole blood GSH and GSSG levels are promising biomarkers of mitochondrial dysfunction, and may give insights into the contribution of oxidative stress to the pathophysiology of the various mitochondrial disorders. In particular, evaluation of redox potential may be useful in monitoring of clinical status or response to redox-modulating therapies in clinical trials.


Retrovirology | 2009

Immunological and redox biomarkers of neutrophils function in HIV/AIDS disease.

Serge Blaise Emaleu; Kondala R. Atkuri

Previous investigators have shown that HIV/AIDS disease is associated with persistent bacterial and fungal infection which would otherwise be cleared by a functional innate immune system. These observations support the idea that although HIV virus infects only CD4 T cells, the disease leads to an impairment of both innate and adaptive immune system. Our study hypothesizes that HIV disease and specific treatments thereof (e.g., protease inhibitors) modulate the activity of leukocyte subsets that are not conventional targets for HIV infection, most notably neutrophils. Furthermore, leukocyte (neutrophil) redox and/or functional imbalance underlies important events in HIV disease, including appearance of opportunistic infections. This study of Neutrophils activation of HIV infected patient helped revisit current immunometabolic concepts that fail to explain the whole spectrum of symptoms in HIV disease in vivo. It has revealed new knowledge about how redox changes within HIV infection. In doing so, achieved better understanding of innate immune subsets, especially neutrophils, in the context of HIV disease. Indeed, neutrophils may be impacted by HIV disease progression (i.e., in their function and not only their numbers), but also, HIV disease progression may in turn be impacted by neutrophil dysfunction (i.e., I the context of failed innate immune response to opportunistic pathogens). Hence, our study delineates simple whole blood biomarkers that will ameliorate the clinical monitoring and prognostic capabilities in HIV disease. We determined that HIV patients show redox abnormalities (low glutathione, ROS, etc) in neutrophils (and other blood leukocytes), and some functional abnormalities in granulocytes (activation status, phagocytosis, signaling pathways), that associate with disease and treatment history.


Archive | 2019

Cysteine/Glutathione Deficiency: A Significant and Treatable Corollary of Disease

Pietro Ghezzi; Kevin V. Lemley; James Andrus; Stephen C. De Rosa; Arne Holmgren; Dean P. Jones; Farook Jahoor; Richard D. Kopke; Ian A. Cotgreave; Teodoro Bottiglieri; Neil Kaplowitz; Hajime Nakamura; Frank J.T. Staal; Stephen W. Ela; Kondala R. Atkuri; Rabindra Tirouvanziam; Kartoosh Heydari; Bita Sahaf; Andrew R. Zolopa; Richard Eugene Frye; John J. Mantovani; Leonard A. Herzenberg; Leonore A. Herzenberg

Glutathione (GSH) deficiency may play a pivotal role in a variety of apparently unrelated clinical conditions and diseases. Orally administered N-acetylcysteine (NAC), which replenishes the cysteine required for GSH synthesis, has been tested in a large number of randomized placebo-controlled trials involving these diseases and conditions. This chapter focused on developing a base of evidence suggesting that NAC administration improves disease by increasing cysteine and/or GSH in a variety of diseases, thereby implying a significant role for GSH deficiency in the clinical basis of many diseases. To develop this base of evidence, we systematically selected studies which considered the hypothesis that the therapeutic efficacy for NAC is an indication that cysteine and/or GSH deficiency is a pathophysiological part of the diseases studied. In this manner we focus this chapter on explaining the biological mechanisms of NAC therapy in a wide variety of disorders and demonstrate its ubiquitous role in improving disease that involves disrupted GSH and/or cysteine metabolism. Electronic supplementary material The online version of this article (10.1007/978-981-10-5311-5_20) contains supplementary material, which is available to authorized users.

Collaboration


Dive into the Kondala R. Atkuri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge