Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd Waldman is active.

Publication


Featured researches published by Todd Waldman.


Journal of Clinical Investigation | 1999

Disruption of p53 in human cancer cells alters the responses to therapeutic agents

Fred Bunz; Paul M. Hwang; Chris Torrance; Todd Waldman; Yonggang Zhang; Larry E. Dillehay; Jerry R. Williams; Christoph Lengauer; Kenneth W. Kinzler; Bert Vogelstein

We have examined the effects of commonly used chemotherapeutic agents on human colon cancer cell lines in which the p53 pathway has been specifically disrupted by targeted homologous recombination. We found that p53 had profound effects on drug responses, and these effects varied dramatically depending on the drug. The p53-deficient cells were sensitized to the effects of DNA-damaging agents as a result of the failure to induce expression of the cyclin-dependent kinase inhibitor p21. In contrast, p53 disruption rendered cells strikingly resistant to the effects of the antimetabolite 5-fluorouracil (5-FU), the mainstay of adjuvant therapy for colorectal cancer. The effects on 5-FU sensitivity were observed both in vitro and in vivo, were independent of p21, and appeared to be the result of perturbations in RNA, rather than DNA, metabolism. These results have significant implications for future efforts to maximize therapeutic efficacy in patients with defined genetic alterations.


Embo Molecular Medicine | 2009

Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors

Ana M. Mendes-Pereira; Sarah A. Martin; Rachel Brough; Afshan McCarthy; Jessica R. Taylor; Jung-Sik Kim; Todd Waldman; Christopher J. Lord; Alan Ashworth

The tumour suppressor gene, phosphatase and tensin homolog (PTEN), is one of the most commonly mutated genes in human cancers. Recent evidence suggests that PTEN is important for the maintenance of genome stability. Here, we show that PTEN deficiency causes a homologous recombination (HR) defect in human tumour cells. The HR deficiency caused by PTEN deficiency, sensitizes tumour cells to potent inhibitors of the DNA repair enzyme poly(ADP‐ribose) polymerase (PARP), both in vitro and in vivo. PARP inhibitors are now showing considerable promise in the clinic, specifically in patients with mutations in either of the breast cancer susceptibility genes BRCA1 or BRCA2. The data we present here now suggests that the clinical assessment of PARP inhibitors should be extended beyond those with BRCA mutations to a larger group of patients with PTEN mutant tumours.


Science | 2011

Mutational inactivation of STAG2 causes aneuploidy in human cancer.

David A. Solomon; Taeyeon Kim; Laura A. Díaz-Martínez; Joshlean Fair; Abdel G. Elkahloun; Brent T. Harris; Jeffrey A. Toretsky; Steven A. Rosenberg; Neerav Shukla; Marc Ladanyi; Yardena Samuels; C. David James; Hongtao Yu; Jung-Sik Kim; Todd Waldman

Tumors harbor mutations that disrupt chromatid separation during cell division, leading to chromosomal abnormalities. Most cancer cells are characterized by aneuploidy, an abnormal number of chromosomes. We have identified a clue to the mechanistic origins of aneuploidy through integrative genomic analyses of human tumors. A diverse range of tumor types were found to harbor deletions or inactivating mutations of STAG2, a gene encoding a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Because STAG2 is on the X chromosome, its inactivation requires only a single mutational event. Studying a near-diploid human cell line with a stable karyotype, we found that targeted inactivation of STAG2 led to chromatid cohesion defects and aneuploidy, whereas in two aneuploid human glioblastoma cell lines, targeted correction of the endogenous mutant alleles of STAG2 led to enhanced chromosomal stability. Thus, genetic disruption of cohesin is a cause of aneuploidy in human cancer.


Nature Medicine | 2014

Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma

Rintaro Hashizume; Noemi Andor; Yuichiro Ihara; Robin Lerner; Haiyun Gan; Xiaoyue Chen; Dong Fang; Xi Huang; Maxwell Tom; Vy Ngo; David A. Solomon; Sabine Mueller; Pamela L. Paris; Zhiguo Zhang; Claudia Petritsch; Nalin Gupta; Todd Waldman; C. David James

Pediatric brainstem gliomas often harbor oncogenic K27M mutation of histone H3.3. Here we show that GSKJ4 pharmacologic inhibition of K27 demethylase JMJD3 increases cellular H3K27 methylation in K27M tumor cells and demonstrate potent antitumor activity both in vitro against K27M cells and in vivo against K27M xenografts. Our results demonstrate that increasing H3K27 methylation by inhibiting K27 demethylase is a valid therapeutic strategy for treating K27M-expressing brainstem glioma.


Cancer Research | 2010

Pharmacologic Inhibition of Cyclin-Dependent Kinases 4 and 6 Arrests the Growth of Glioblastoma Multiforme Intracranial Xenografts

Karine Michaud; David A. Solomon; Eric K. Oermann; Jung-Sik Kim; Wei Zhu Zhong; Michael D. Prados; Tomoko Ozawa; C. David James; Todd Waldman

Activation of cyclin-dependent kinases 4 and 6 (cdk4/6) occurs in the majority of glioblastoma multiforme (GBM) tumors, and represents a promising molecular target for the development of small molecule inhibitors. In the current study, we investigated the molecular determinants and in vivo response of diverse GBM cell lines and xenografts to PD-0332991, a cdk4/6-specific inhibitor. In vitro testing of PD-0332991 against a panel of GBM cell lines revealed a potent G(1) cell cycle arrest and induction of senescence in each of 16 retinoblastoma protein (Rb)-proficient cell lines regardless of other genetic lesions, whereas 5 cell lines with homozygous inactivation of Rb were completely resistant to treatment. Short hairpin RNA depletion of Rb expression conferred resistance of GBM cells to PD-0332991, further demonstrating a requirement of Rb for sensitivity to cdk4/6 inhibition. PD-0332991 was found to efficiently cross the blood-brain barrier and proved highly effective in suppressing the growth of intracranial GBM xenograft tumors, including those that had recurred after initial therapy with temozolomide. Remarkably, no mice receiving PD-0332991 died as a result of disease progression while on therapy. Additionally, the combination of PD-0332991 and radiation therapy resulted in significantly increased survival benefit compared with either therapy alone. In total, our results support clinical trial evaluation of PD-0332991 against newly diagnosed as well as recurrent GBM, and indicate that Rb status is the primary determinant of potential benefit from this therapy.


PLOS Genetics | 2014

The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation.

Andrew S. Brohl; David A. Solomon; Wendy W Chang; Jianjun Wang; Young K. Song; Sivasish Sindiri; Rajesh Patidar; Laura Hurd; Li Chen; Jack F. Shern; Hongling Liao; Xinyu Wen; Julia Gerard; Jung-Sik Kim; José Antonio López Guerrero; Isidro Machado; Daniel H. Wai; Piero Picci; Timothy J. Triche; Andrew E. Horvai; Markku Miettinen; Jun S. Wei; Daniel Catchpool; Antonio Llombart-Bosch; Todd Waldman; Javed Khan

The Ewing sarcoma family of tumors (EFT) is a group of highly malignant small round blue cell tumors occurring in children and young adults. We report here the largest genomic survey to date of 101 EFT (65 tumors and 36 cell lines). Using a combination of whole genome sequencing and targeted sequencing approaches, we discover that EFT has a very low mutational burden (0.15 mutations/Mb) but frequent deleterious mutations in the cohesin complex subunit STAG2 (21.5% tumors, 44.4% cell lines), homozygous deletion of CDKN2A (13.8% and 50%) and mutations of TP53 (6.2% and 71.9%). We additionally note an increased prevalence of the BRCA2 K3326X polymorphism in EFT patient samples (7.3%) compared to population data (OR 7.1, p = 0.006). Using whole transcriptome sequencing, we find that 11% of tumors pathologically diagnosed as EFT lack a typical EWSR1 fusion oncogene and that these tumors do not have a characteristic Ewing sarcoma gene expression signature. We identify samples harboring novel fusion genes including FUS-NCATc2 and CIC-FOXO4 that may represent distinct small round blue cell tumor variants. In an independent EFT tissue microarray cohort, we show that STAG2 loss as detected by immunohistochemistry may be associated with more advanced disease (p = 0.15) and a modest decrease in overall survival (p = 0.10). These results significantly advance our understanding of the genomic and molecular underpinnings of Ewing sarcoma and provide a foundation towards further efforts to improve diagnosis, prognosis, and precision therapeutics testing.


Molecular and Cellular Biology | 2007

Activation of p53-Dependent Growth Suppression in Human Cells by Mutations in PTEN or PIK3CA

Jung-Sik Kim; Carolyn Lee; Challice L. Bonifant; Habtom W. Ressom; Todd Waldman

ABSTRACT In an effort to identify genes whose expression is regulated by activated phosphatidylinositol 3-kinase (PI3K) signaling, we performed microarray analysis and subsequent quantitative reverse transcription-PCR on an isogenic set of PTEN gene-targeted human cancer cells. Numerous p53 effectors were upregulated following PTEN deletion, including p21, GDF15, PIG3, NOXA, and PLK2. Stable depletion of p53 led to reversion of the gene expression program. Western blots revealed that p53 was stabilized in HCT116 PTEN−/− cells via an Akt1-dependent and p14ARF-independent mechanism. Stable depletion of PTEN in untransformed human fibroblasts and epithelial cells also led to upregulation of p53 and senescence-like growth arrest. Simultaneous depletion of p53 rescued this phenotype, enabling PTEN-depleted cells to continue proliferating. Next, we tested whether oncogenic PIK3CA, like inactivated PTEN, could activate p53. Retroviral expression of oncogenic human PIK3CA in MCF10A cells led to activation of p53 and upregulation of p53-regulated genes. Stable depletion of p53 reversed these PIK3CA-induced expression changes and synergized with oncogenic PIK3CA in inducing anchorage-independent growth. Finally, targeted deletion of an endogenous allele of oncogenic, but not wild-type, PIK3CA in a human cancer cell line led to a reduction in p53 levels and a decrease in the expression of p53-regulated genes. These studies demonstrate that activation of PI3K signaling by mutations in PTEN or PIK3CA can lead to activation of p53-mediated growth suppression in human cells, indicating that p53 can function as a brake on phosphatidylinositol (3, 4, 5)-triphosphate-induced mitogenesis during human cancer pathogenesis.


Radiation Oncology | 2009

Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells.

Hui-Fang Li; Jung-Sik Kim; Todd Waldman

BackgroundIonizing radiation (IR) therapy is a primary treatment for glioblastoma multiforme (GBM), a common and devastating brain tumor in humans. IR has been shown to induce PI3K-Akt activation in many cell types, and activation of the PI3K-Akt signaling pathway has been correlated with radioresistance.MethodsInitially, the effects of IR on Akt activation were assessed in multiple human GBM cell lines. Next, to evaluate a potential causative role of IR-induced Akt activation on radiosensitivity, Akt activation was inhibited during IR with several complementary genetic and pharmacological approaches, and radiosensitivity measured using clonogenic survival assays.ResultsThree of the eight cell lines tested demonstrated IR-induced Akt activation. Further studies revealed that IR-induced Akt activation was dependent upon the presence of a serum factor, and could be inhibited by the EGFR inhibitor AG1478. Inhibition of PI3K activation with LY294002, or with inducible wild-type PTEN, inhibition of EGFR, as well as direct inhibition of Akt with two Akt inhibitors during irradiation increased the radiosensitivity of U87MG cells.ConclusionThese results suggest that Akt may be a central player in a feedback loop whereby activation of Akt induced by IR increases radioresistance of GBM cells. Targeting the Akt signaling pathway may have important therapeutic implications when used in combination with IR in the treatment of a subset of brain tumor patients.


Clinical Cancer Research | 2011

Targeted Therapy for BRAFV600E Malignant Astrocytoma

Theo Nicolaides; Hui-Fang Li; David A. Solomon; Sujatmi Hariono; Rintaro Hashizume; Krister J. Barkovich; S Baker; Barbara S. Paugh; Chris Jones; Tim Forshew; G. F Hindley; J. G Hodgson; Jung-Sik Kim; David H. Rowitch; William A. Weiss; Todd Waldman; Charles David James

Purpose: Malignant astrocytomas (MA) are aggressive central nervous system tumors with poor prognosis. Activating mutation of BRAF (BRAFV600E) has been reported in a subset of these tumors, especially in children. We have investigated the incidence of BRAFV600E in additional pediatric patient cohorts and examined the effects of BRAF blockade in preclinical models of BRAFV600E and wild-type BRAF MA. Experimental Design: BRAFV600E mutation status was examined in two pediatric MA patient cohorts. For functional studies, BRAFV600E MA cell lines were used to investigate the effects of BRAF shRNA knockdown in vitro, and to investigate BRAF pharmacologic inhibition in vitro and in vivo. Results: BRAFV600E mutations were identified in 11 and 10% of MAs from two distinct series of tumors (six of 58 cases total). BRAF was expressed in all MA cell lines examined, among which BRAFV600E was identified in four instances. Using the BRAFV600E-specific inhibitor PLX4720, pharmacologic blockade of BRAF revealed preferential antiproliferative activity against BRAFV600E mutant cells in vitro, in contrast to the use of shRNA-mediated knockdown of BRAF, which inhibited cell growth of glioma cell lines regardless of BRAF mutation status. Using orthotopic MA xenografts, we show that PLX4720 treatment decreases tumor growth and increases overall survival in mice-bearing BRAFV600E mutant xenografts, while being ineffective, and possibly tumor promoting, against xenografts with wild-type BRAF. Conclusions: Our results indicate a 10% incidence of activating BRAFV600E among pediatric MAs. With regard to implications for therapy, our results support evaluation of BRAFV600E-specific inhibitors for treating BRAFV600E MA patients. Clin Cancer Res; 17(24); 7595–604. ©2011 AACR.


Current Topics in Microbiology and Immunology | 2010

Oncogenic Mutations of PIK3CA in Human Cancers

Yardena Samuels; Todd Waldman

The involvement of the PIK3CA gene product p110α, the catalytic subunit of phosphatidylinositol 3-kinase (PI3K), in human cancer has been suggested for over 15 years, and support for this proposal had been provided by both genetic and functional studies, including most recently the discovery of common activating missense mutations of PIK3CA in a wide variety of common human tumor types. This chapter will focus on the discovery of these mutations and describes their relevance to a wide range of common human tumor types.Of note, the identification and functional analysis of the PIK3CA gene are reviewed in other chapters in this book. However, a brief mention will be made here of its general properties as background to our focus on the discovery of its cancer-specific mutations.

Collaboration


Dive into the Todd Waldman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert Vogelstein

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yardena Samuels

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven A. Rosenberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge