Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom C. Cameron is active.

Publication


Featured researches published by Tom C. Cameron.


Ecology Letters | 2013

Eco-evolutionary dynamics in response to selection on life-history

Tom C. Cameron; Daniel O'Sullivan; Alan Reynolds; Stuart B. Piertney; Tim G. Benton

Understanding the consequences of environmental change on ecological and evolutionary dynamics is inherently problematic because of the complex interplay between them. Using invertebrates in microcosms, we characterise phenotypic, population and evolutionary dynamics before, during and after exposure to a novel environment and harvesting over 20 generations. We demonstrate an evolved change in life-history traits (the age- and size-at-maturity, and survival to maturity) in response to selection caused by environmental change (wild to laboratory) and to harvesting (juvenile or adult). Life-history evolution, which drives changes in population growth rate and thus population dynamics, includes an increase in age-to-maturity of 76% (from 12.5 to 22 days) in the unharvested populations as they adapt to the new environment. Evolutionary responses to harvesting are outweighed by the response to environmental change (∼ 1.4 vs. 4% change in age-at-maturity per generation). The adaptive response to environmental change converts a negative population growth trajectory into a positive one: an example of evolutionary rescue.


PLOS ONE | 2013

Facilitation or competition? Tree effects on grass biomass across a precipitation gradient.

Aristides Moustakas; William E. Kunin; Tom C. Cameron; Mahesh Sankaran

Savanna ecosystems are dominated by two distinct plant life forms, grasses and trees, but the interactions between them are poorly understood. Here, we quantified the effects of isolated savanna trees on grass biomass as a function of distance from the base of the tree and tree height, across a precipitation gradient in the Kruger National Park, South Africa. Our results suggest that mean annual precipitation (MAP) mediates the nature of tree-grass interactions in these ecosystems, with the impact of trees on grass biomass shifting qualitatively between 550 and 737 mm MAP. Tree effects on grass biomass were facilitative in drier sites (MAP≤550 mm), with higher grass biomass observed beneath tree canopies than outside. In contrast, at the wettest site (MAP = 737 mm), grass biomass did not differ significantly beneath and outside tree canopies. Within this overall precipitation-driven pattern, tree height had positive effect on sub-canopy grass biomass at some sites, but these effects were weak and not consistent across the rainfall gradient. For a more synthetic understanding of tree-grass interactions in savannas, future studies should focus on isolating the different mechanisms by which trees influence grass biomass, both positively and negatively, and elucidate how their relative strengths change over broad environmental gradients.


Trends in Ecology and Evolution | 2014

When less is more: positive population-level effects of mortality

Arne Schröder; Anieke van Leeuwen; Tom C. Cameron

Experimental and theoretical studies show that mortality imposed on a population can counter-intuitively increase the density of a specific life-history stage or total population density. Understanding positive population-level effects of mortality is advancing, illuminating implications for population, community, and applied ecology. Reconciling theory and data, we found that the mathematical models used to study mortality effects vary in the effects predicted and mechanisms proposed. Experiments predominantly demonstrate stage-specific density increases in response to mortality. We argue that the empirical evidence supports theory based on stage-structured population models but not on unstructured models. We conclude that stage-specific positive mortality effects are likely to be common in nature and that accounting for within-population individual variation is essential for developing ecological theory.


The American Naturalist | 2012

Population responses to perturbations: the importance of trait-based analysis illustrated through a microcosm experiment.

Arpat Ozgul; Tim Coulson; Alan Reynolds; Tom C. Cameron; Tim G. Benton

Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population’s response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics.


The American Naturalist | 2004

The Dynamical Consequences of Developmental Variability and Demographic Stochasticity for Host‐Parasitoid Interactions

Helen J. Wearing; Pejman Rohani; Tom C. Cameron; Steven M. Sait

Few age‐structured models of species dynamics incorporate variability and uncertainty in population processes. Motivated by laboratory data for an insect and its parasitoid, we investigate whether such assumptions are appropriate when considering the population dynamics of a single species and its interaction with a natural enemy. Specifically, we examine the effects of developmental variability and demographic stochasticity on different types of cyclic dynamics predicted by traditional models. We show that predictions based on the deterministic fixed‐development approach are differentially sensitive to variability and noise in key life stages. In particular, we find that the demonstration of half‐generation cycles in the single‐species model and the multigeneration cycles in the host‐parasitoid model are sensitive to the introduction of developmental variability and noise, whereas generation cycles are robust to the intrinsic variability and uncertainty that may be found in nature.


Advances in Ecological Research | 2014

Eco-Evolutionary Dynamics: Experiments in a Model System

Tom C. Cameron; Stewart J. Plaistow; Marianne Mugabo; Stuart B. Piertney; Tim G. Benton

Abstract Understanding the consequences of environmental change on both long- and short-term ecological and evolutionary dynamics is a basic pre-requisite for any effective conservation or management programme but inherently problematic because of the complex interplay between ecological and evolutionary processes. Components of such complexity have been described in isolation or within conceptual models on numerous occasions. What remains lacking are studies that characterise effectively the coupled ecological and evolutionary dynamics, to demonstrate feedback mechanisms that influence both phenotypic change, and its effects on population demography, in organisms with complex life histories. We present a systems-based approach that brings together multiple effects that ‘shape’ an organisms life history (e.g. direct and delayed life-history consequences of environmental variation) and the resulting eco-evolutionary population dynamics. Using soil mites in microcosms, we characterise ecological, phenotypic and evolutionary dynamics in replicated populations in response to experimental manipulations of environment (e.g. the competitive environment, female age, male quality). Our results demonstrate that population dynamics are complex and are affected by both plastic and evolved responses to past and present environments, and that the emergent population dynamic itself shaped the landscape for natural selection to act on in subsequent generations. Evolutionary and ecological effects on dynamics can therefore be almost impossible to partition, which needs to be considered and appreciated in research, management and conservation.


Ecology | 2007

Intraspecific competition : The role of lags between attack and death in host-parasitoid interactions

Tom C. Cameron; Daniel B. Metcalfe; Andrew P. Beckerman; Steven M. Sait

Many natural enemies do not immediately kill their host, and the lag this creates between attack and host death results in mixed populations of uninfected and infected hosts. Both competition and parasitism are known to be major structuring forces in ecological communities; however, surprisingly little is known about how the competitive nature of infected hosts could affect the survival and dynamics of remaining uninfected host populations. Using a laboratory system comprising the Indian meal moth, Plodia interpunctella, and a solitary koinobiont parasitoid, Venturia canescens, we address this question by conducting replicated competition experiments between the unparasitized and parasitized classes of host larvae. For varying proportions of parasitized host larvae and competitor densities, we consider the effects of competition within (intraclass) and between (interclass) unparasitized and parasitized larvae on the survival, development time, and size of adult moths and parasitoid wasps. The greatest effects were on survival: increased competitor densities reduced survival of both parasitized and unparasitized larvae. However, unparasitized larvae survival, but not parasitized larvae survival, was reduced by increasing interclass competition. To our knowledge, this is the first experimental demonstration of the competitive superiority of parasitized over unparasitized hosts for limiting resources. We discuss possible mechanisms for this phenomenon, why it may have evolved, and its possible influence on the stability of host-parasite dynamics.


Journal of Animal Ecology | 2015

Do intraspecific or interspecific interactions determine responses to predators feeding on a shared size-structured prey community?

Hanna ten Brink; Abul Kalam Azad Mazumdar; Joseph Huddart; Lennart Persson; Tom C. Cameron

Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP.


Biology Letters | 2012

Multiple mating in the traumatically inseminating Warehouse pirate bug, Xylocoris flavipes: effects on fecundity and longevity

Amy Backhouse; Steven M. Sait; Tom C. Cameron

Optimal mating frequencies differ between sexes as a consequence of the sexual differentiation of reproductive costs per mating, where mating is normally more costly to females than males. In mating systems where sexual reproduction is costly to females, sexual conflict may cause both direct (i.e. by reducing female fecundity or causing mortality) and indirect (i.e. increased risk of mortality, reduced offspring viability) reductions in lifetime reproductive success of females, which have individual and population consequences. We investigated the direct and indirect costs of multiple mating in a traumatically inseminating (TI) predatory Warehouse pirate bug, Xylocoris flavipes (Reuter) (Hemiptera: Anthocoridae), where the male penetrates the females abdomen during copulation. This study aimed to quantify the effects of TI on female fecundity, egg viability, the lifetime fecundity schedule, longevity and prey consumption in this cosmopolitan biocontrol agent. We found no difference in the total reproductive output between mating treatments in terms of total eggs laid or offspring viability, but there were significant differences found in daily fecundity schedules and adult longevity. In terms of lifetime reproduction, female Warehouse pirate bugs appear to be adapted to compensate for the costs of TI mating to their longevity.


Ecology and Evolution | 2016

Harvested populations are more variable only in more variable environments.

Tom C. Cameron; Daniel O'Sullivan; Alan Reynolds; Joseph P. Hicks; Stuart B. Piertney; Tim G. Benton

Abstract The interaction between environmental variation and population dynamics is of major importance, particularly for managed and economically important species, and especially given contemporary changes in climate variability. Recent analyses of exploited animal populations contested whether exploitation or environmental variation has the greatest influence on the stability of population dynamics, with consequences for variation in yield and extinction risk. Theoretical studies however have shown that harvesting can increase or decrease population variability depending on environmental variation, and requested controlled empirical studies to test predictions. Here, we use an invertebrate model species in experimental microcosms to explore the interaction between selective harvesting and environmental variation in food availability in affecting the variability of stage‐structured animal populations over 20 generations. In a constant food environment, harvesting adults had negligible impact on population variability or population size, but in the variable food environments, harvesting adults increased population variability and reduced its size. The impact of harvesting on population variability differed between proportional and threshold harvesting, between randomly and periodically varying environments, and at different points of the time series. Our study suggests that predicting the responses to selective harvesting is sensitive to the demographic structures and processes that emerge in environments with different patterns of environmental variation.

Collaboration


Dive into the Tom C. Cameron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge