Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom Hennebel is active.

Publication


Featured researches published by Tom Hennebel.


Bioresource Technology | 2012

Methanosarcina: the rediscovered methanogen for heavy duty biomethanation.

Jo De Vrieze; Tom Hennebel; Nico Boon; Willy Verstraete

Anaerobic digestion is an important technology in the framework of renewable energy production. The anaerobic digestion system is susceptible to perturbations due to the sensitivity of the methanogens towards environmental factors. Currently, technology is evolving from conventional waste treatment, i.e. the removal of pollutants, to very intensive biogas production from concentrated wastes, in the framework of bio-energy production. In the latter configuration Methanosarcina species appear to be of crucial importance. Methanosarcina sp. are, compared to other methanogens, quite robust towards different impairments. They are reported to be tolerant to total ammonium concentrations up to 7000 mg L(-1), salt concentrations up to 18,000 mg Na(+)L(-1), a pH shock of 0.8-1.0 units and acetate concentrations up to 15,000 mg CODL(-1). The possibilities of Methanosarcina sp. as key organisms in specific types of anaerobic digestion systems are demonstrated in this review.


Trends in Biotechnology | 2009

Biogenic metals in advanced water treatment.

Tom Hennebel; Bart De Gusseme; Nico Boon; Willy Verstraete

Microorganisms can change the oxidation state of metals and concomitantly deposit metal oxides and zerovalent metals on or into their cells. The microbial mechanisms involved in these processes have been extensively studied in natural environments, and researchers have recently gained interest in the applications of microbe-metal interactions in biotechnology. Because of their specific characteristics, such as high specific surface areas and high catalytic reactivity, biogenic metals offer promising perspectives for the sorption and (bio)degradation of contaminants. In this review, the precipitation of biogenic manganese and iron species and the microbial reduction of precious metals, such as palladium, platinum, silver and gold, are discussed with specific attention to the application of these biogenic metals in innovative remediation technologies in advanced water treatment.


Microbial Biotechnology | 2012

Bio-palladium: from metal recovery to catalytic applications

Simon De Corte; Tom Hennebel; Bart De Gusseme; Willy Verstraete; Nico Boon

While precious metals are available to a very limited extent, there is an increasing demand to use them as catalyst. This is also true for palladium (Pd) catalysts and their sustainable recycling and production are required. Since Pd catalysts exist nowadays mostly under the form of nanoparticles, these particles need to be produced in an environment‐friendly way. Biological synthesis of Pd nanoparticles (‘bio‐Pd’) is an innovative method for both metal recovery and nanocatalyst synthesis. This review will discuss the different bio‐Pd precipitating microorganisms, the applications of the catalyst (both for environmental purposes and in organic chemistry) and the state of the art of the reactors based on the bio‐Pd concept. In addition, some main challenges are discussed, which need to be overcome in order to create a sustainable nanocatalyst. Finally, some outlooks for bio‐Pd in environmental technology are presented.


Water Research | 2009

Biological removal of 17α-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor.

Bart De Gusseme; Benny Pycke; Tom Hennebel; Annabel Marcoen; Siegfried Vlaeminck; H. Noppe; Nico Boon; Willy Verstraete

Increasing concern about the fate of 17alpha-ethinylestradiol (EE2) in the environment stimulates the search for alternative methods for wastewater treatment plant (WWTP) effluent polishing. The aim of this study was to establish an innovative and effective biological removal technique for EE2 by means of a nitrifier enrichment culture (NEC) applied in a membrane bioreactor (MBR). In batch incubation tests, the microbial consortium was able to remove EE2 from both a synthetic minimal medium and WWTP effluent. A maximum EE2 removal rate of 9.0 microg EE2 g(-1)biomass-VSS h(-1) was achieved (>94% removal efficiency). Incubation of the heterotrophic bacteria isolated from the NEC did not result in a significant EE2 removal, indicating the importance of nitrification as driving force in the mechanism. Application of the NEC in a MBR to treat a synthetic influent with an EE2 concentration of 83 ng EE2 L(-1) resulted in a removal efficiency of 99% (loading rates up to 208 ng EE2 L(-1)d(-1); membrane flux rate: 6.9 L m(-2) h(-1)). Simultaneously, complete nitrification was achieved at an optimal ammonium influent concentration of 1.0 mg NH(4)(+)-N L(-1). This minimal NH(4)(+)-N input is very advantageous for effluent polishing since the concomitant effluent nitrate concentrations will be low as well and it offers opportunities for the nitrifying MBR as a promising add-on technology for WWTP effluent polishing.


Applied and Environmental Microbiology | 2010

Biogenic silver for disinfection of water contaminated with viruses.

Bart De Gusseme; Liesje Sintubin; Leen Baert; Ellen Thibo; Tom Hennebel; Griet Vermeulen; Mieke Uyttendaele; Willy Verstraete; Nico Boon

ABSTRACT The presence of enteric viruses in drinking water is a potential health risk. Growing interest has arisen in nanometals for water disinfection, in particular the use of silver-based nanotechnology. In this study, Lactobacillus fermentum served as a reducing agent and bacterial carrier matrix for zerovalent silver nanoparticles, referred to as biogenic Ag0. The antiviral action of biogenic Ag0 was examined in water spiked with an Enterobacter aerogenes-infecting bacteriophage (UZ1). Addition of 5.4 mg liter−1 biogenic Ag0 caused a 4.0-log decrease of the phage after 1 h, whereas the use of chemically produced silver nanoparticles (nAg0) showed no inactivation within the same time frame. A control experiment with 5.4 mg liter−1 ionic Ag+ resulted in a similar inactivation after 5 h only. The antiviral properties of biogenic Ag0 were also demonstrated on the murine norovirus 1 (MNV-1), a model organism for human noroviruses. Biogenic Ag0 was applied to an electropositive cartridge filter (NanoCeram) to evaluate its capacity for continuous disinfection. Addition of 31.25 mg biogenic Ag0 m−2 on the filter (135 mg biogenic Ag0 kg−1 filter medium) caused a 3.8-log decline of the virus. In contrast, only a 1.5-log decrease could be obtained with the original filter. This is the first report to demonstrate the antiviral efficacy of extracellular biogenic Ag0 and its promising opportunities for continuous water disinfection.


Water Research | 2011

Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes

Bart De Gusseme; Tom Hennebel; Eline Christiaens; Hans Saveyn; Kim Verbeken; Jeffrey P. Fitts; Nico Boon; Willy Verstraete

The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag(0)) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag(0) particles, preventing aggregation during encapsulation. In this study, bio-Ag(0) was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag(0) and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranes was successfully demonstrated and was most probably related to the slow release of Ag(+) from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag(0)(powder) m(-2) in a submerged plate membrane reactor operated at a flux of 3.1 L m(-2) h(-1). Upon startup, the silver concentration in the effluent initially increased to 271 μg L(-1) but after filtration of 31 L m(-2), the concentration approached the drinking water limit ( = 100 μg L(-1)). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m(-2) h(-1), showing the potential of this membrane technology for water disinfection on small scale.


Biotechnology and Bioengineering | 2009

Biocatalytic dechlorination of trichloroethylene with bio‐palladium in a pilot‐scale membrane reactor

Tom Hennebel; Henri Simoen; Wim De Windt; Marc Verloo; Nico Boon; Willy Verstraete

Trichloroethylene (TCE) is a toxic and recalcitrant groundwater pollutant. An innovative technology using microbial produced Pd(0) nanoparticles for the remediation of TCE contaminated groundwater was developed. The nanoscale bio‐Pd particles were precipitated on the biomass of Shewanella oneidensis and hydrogen gas, formate, or formic acid were used as hydrogen donors. Ethane turned out to be the only organic degradation product and no intermediate chlorinated reaction products were detected. Subsequently bio‐Pd was implemented in a plate membrane reactor (MR) for the treatment of water containing TCE. In a continuous MR system, containing 50 mg L−1 bio‐Pd, removal rates up to 2,515 mg TCE day−1 g−1 Pd were achieved with H2 gas as hydrogen donor. The measured chloride mass balance confirmed the removal rates. This work shows that a complete, efficient and rapid removal of TCE was achieved with bio‐Pd and that a MR system containing bio‐Pd and supplied with hydrogen gas offers an alternative for the current remediation technologies of water contaminated with TCE. Biotechnol. Bioeng. 2009;102: 995–1002.


Biochemical Society Transactions | 2012

Operational and technical considerations for microbial electrosynthesis

Joachim Desloover; Jan Arends; Tom Hennebel; Korneel Rabaey

Extracellular electron transfer has, in one decade, emerged from an environmental phenomenon to an industrial process driver. On the one hand, electron transfer towards anodes leads to production of power or chemicals such as hydrogen, caustic soda and hydrogen peroxide. On the other hand, electron transfer from cathodes enables bioremediation and bioproduction. Although the microbiology of extracellular electron transfer is increasingly being understood, bringing the processes to application requires a number of considerations that are both operational and technical. In the present paper, we investigate the key applied aspects related to electricity-driven bioproduction, including biofilm development, reactor and electrode design, substrate fluxes, surface chemistry, hydrodynamics and electrochemistry, and finally end-product removal/toxicity. Each of these aspects will be critical for the full exploitation of the intriguing physiological feat that extracellular electron transfer is today.


Water Research | 2011

Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor

Ilse Forrez; Marta Carballa; Guido Fink; Arne Wick; Tom Hennebel; Lynn Vanhaecke; Thomas A. Ternes; Nico Boon; Willy Verstraete

Pharmaceutical and personal care products, biocides and iodinated contrast media (ICM) are persistent compounds, which appear in ng to μg L(-1) in secondary effluents of sewage treatment plants (STPs). In this work, biogenic metals manganese oxides (BioMnOx) and bio-palladium (Bio-Pd) were applied in lab-scale membrane bioreactors (MBR) as oxidative and reductive technologies, respectively, to remove micropollutants from STP-effluent. From the 29 substances detected in the STP-effluent, 14 were eliminated in the BioMnOx-MBR: ibuprofen (>95%), naproxen (>95%), diuron (>94%), codeine (>93%), N-acetyl-sulfamethoxazole (92%), chlorophene (>89%), diclofenac (86%), mecoprop (81%), triclosan (>78%), clarithromycin, (75%), iohexol (72%), iopromide (68%), iomeprol (63%) and sulfamethoxazole (52%). The putative removal mechanisms were the chemical oxidation by BioMnOx and/or the biological removal by Pseudomonas putida and associated bacteria in the enriched biofilm. Yet, the removal rates (highest value: 2.6 μg diclofenac L(-1) d(-1)) need to improve by a factor 10 in order to be competitive with ozonation. ICM, persistent towards oxidative techniques, were successfully dehalogenated with a novel reductive technique using Bio-Pd as a nanosized catalyst in an MBR. Iomeprol, iopromide and iohexol were removed for >97% and the more recalcitrant diatrizoate for 90%. The conditions favorable for microbial H(2)-production enabling the charging of the Pd catalyst, were shown to be important for the removal of ICM. Overall, the results indicate that Mn oxide and Pd coupled to microbial catalysis offer novel potential for advanced water treatment.


Environmental Science & Technology | 2010

Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate

Dev Chidambaram; Tom Hennebel; Safiyh Taghavi; Jan Mast; Nico Boon; Willy Verstraete; Daniel van der Lelie; Jeffrey P. Fitts

The catalytic properties of various metal nanoparticles have led to their use in environmental remediation. Our aim is to develop and apply an efficient bioremediation method based on in situ biosynthesis of bio-Pd nanoparticles and hydrogen. C. pasteurianum BC1 was used to reduce Pd(II) ions to form Pd nanoparticles (bio-Pd) that primarily precipitated on the cell wall and in the cytoplasm. C. pasteurianum BC1 cells, loaded with bio-Pd nanoparticle in the presence of glucose, were subsequently used to fermentatively produce hydrogen and to effectively catalyze the removal of soluble Cr(VI) via reductive transformation to insoluble Cr(III) species. Batch and aquifer microcosm experiments using C. pasteurianum BC1 cells loaded with bio-Pd showed efficient reductive Cr(VI) removal, while in control experiments with killed or viable but Pd-free bacterial cultures no reductive Cr(VI) removal was observed. Our results suggest a novel process where the in situ microbial production of hydrogen is directly coupled to the catalytic bio-Pd mediated reduction of chromate. This process offers significant advantages over the current groundwater treatment technologies that rely on introducing preformed catalytic nanoparticles into groundwater treatment zones and the costly addition of molecular hydrogen to above ground pump and treat systems.

Collaboration


Dive into the Tom Hennebel's collaboration.

Top Co-Authors

Avatar

Nico Boon

Janssen Pharmaceutica

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge