Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulrika A. Hänninen is active.

Publication


Featured researches published by Ulrika A. Hänninen.


Nature Genetics | 2015

CTCF/cohesin-binding sites are frequently mutated in cancer

Riku Katainen; Kashyap Dave; Esa Pitkänen; Kimmo Palin; Teemu Kivioja; Niko Välimäki; Alexandra E. Gylfe; Heikki Ristolainen; Ulrika A. Hänninen; Tatiana Cajuso; Johanna Kondelin; Tomas Tanskanen; Jukka-Pekka Mecklin; Heikki Järvinen; Laura Renkonen-Sinisalo; Anna Lepistö; Eevi Kaasinen; Outi Kilpivaara; Sari Tuupanen; Martin Enge; Jussi Taipale; Lauri A. Aaltonen

Cohesin is present in almost all active enhancer regions, where it is associated with transcription factors. Cohesin frequently colocalizes with CTCF (CCCTC-binding factor), affecting genomic stability, expression and epigenetic homeostasis. Cohesin subunits are mutated in cancer, but CTCF/cohesin-binding sites (CBSs) in DNA have not been examined for mutations. Here we report frequent mutations at CBSs in cancers displaying a mutational signature where mutations in A•T base pairs predominate. Integration of whole-genome sequencing data from 213 colorectal cancer (CRC) samples and chromatin immunoprecipitation sequencing (ChIP-exo) data identified frequent point mutations at CBSs. In contrast, CRCs showing an ultramutator phenotype caused by defects in the exonuclease domain of DNA polymerase ɛ (POLE) displayed significantly fewer mutations at and adjacent to CBSs. Analysis of public data showed that multiple cancer types accumulate CBS mutations. CBSs are a major mutational hotspot in the noncoding cancer genome.


International Journal of Cancer | 2014

Exome sequencing reveals frequent inactivating mutations in ARID1A, ARID1B, ARID2 and ARID4A in microsatellite unstable colorectal cancer

Tatiana Cajuso; Ulrika A. Hänninen; Johanna Kondelin; Alexandra E. Gylfe; Tomas Tanskanen; Riku Katainen; Esa Pitkänen; Heikki Ristolainen; Eevi Kaasinen; Minna Taipale; Jussi Taipale; Jan Böhm; Laura Renkonen-Sinisalo; Jukka-Pekka Mecklin; Heikki Järvinen; Sari Tuupanen; Outi Kilpivaara; Pia Vahteristo

ARID1A has been identified as a novel tumor suppressor gene in ovarian cancer and subsequently in various other tumor types. ARID1A belongs to the ARID domain containing gene family, which comprises of 15 genes involved, for example, in transcriptional regulation, proliferation and chromatin remodeling. In this study, we used exome sequencing data to analyze the mutation frequency of all the ARID domain containing genes in 25 microsatellite unstable (MSI) colorectal cancers (CRCs) as a first systematic effort to characterize the mutation pattern of the whole ARID gene family. Genes which fulfilled the selection criteria in this discovery set (mutations in at least 4/25 [16%] samples, including at least one nonsense or splice site mutation) were chosen for further analysis in an independent validation set of 21 MSI CRCs. We found that in addition to ARID1A, which was mutated in 39% of the tumors (18/46), also ARID1B (13%, 6/46), ARID2 (13%, 6/46) and ARID4A (20%, 9/46) were frequently mutated. In all these genes, the mutations were distributed along the entire length of the gene, thus distinguishing them from typical MSI target genes previously described. Our results indicate that in addition to ARID1A, other members of the ARID gene family may play a role in MSI CRC.


PLOS Genetics | 2013

Eleven Candidate Susceptibility Genes for Common Familial Colorectal Cancer

Alexandra E. Gylfe; Riku Katainen; Johanna Kondelin; Tomas Tanskanen; Tatiana Cajuso; Ulrika A. Hänninen; Jussi Taipale; Minna Taipale; Laura Renkonen-Sinisalo; Heikki Järvinen; Jukka-Pekka Mecklin; Outi Kilpivaara; Esa Pitkänen; Pia Vahteristo; Sari Tuupanen; Auli Karhu; Lauri A. Aaltonen

Hereditary factors are presumed to play a role in one third of colorectal cancer (CRC) cases. However, in the majority of familial CRC cases the genetic basis of predisposition remains unexplained. This is particularly true for families with few affected individuals. To identify susceptibility genes for this common phenotype, we examined familial cases derived from a consecutive series of 1514 Finnish CRC patients. Ninety-six familial CRC patients with no previous diagnosis of a hereditary CRC syndrome were included in the analysis. Eighty-six patients had one affected first-degree relative, and ten patients had two or more. Exome sequencing was utilized to search for genes harboring putative loss-of-function variants, because such alterations are likely candidates for disease-causing mutations. Eleven genes with rare truncating variants in two or three familial CRC cases were identified: UACA, SFXN4, TWSG1, PSPH, NUDT7, ZNF490, PRSS37, CCDC18, PRADC1, MRPL3, and AKR1C4. Loss of heterozygosity was examined in all respective cancer samples, and was detected in seven occasions involving four of the candidate genes. In all seven occasions the wild-type allele was lost (P = 0.0078) providing additional evidence that these eleven genes are likely to include true culprits. The study provides a set of candidate predisposition genes which may explain a subset of common familial CRC. Additional genetic validation in other populations is required to provide firm evidence for causality, as well as to characterize the natural history of the respective phenotypes.


British Journal of Cancer | 2016

Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer

David Jarvis; Jonathan S. Mitchell; Philip J. Law; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Jaakko Kaprio; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Samuli Ripatti; Aarno Palotie; Heikki Järvinen; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Meklin; Nada A. Al-Tassan; Claire Palles; Lynn Martin; Ella Barclay

Background:Observational studies have associated adiposity with an increased risk of colorectal cancer (CRC). However, such studies do not establish a causal relationship. To minimise bias from confounding we performed a Mendelian randomisation (MR) analysis to examine the relationship between adiposity and CRC.Methods:We used SNPs associated with adult body mass index (BMI), waist-hip ratio (WHR), childhood obesity and birth weight as instrumental variables in a MR analysis of 9254 CRC cases and 18 386 controls.Results:In the MR analysis, the odds ratios (ORs) of CRC risk per unit increase in BMI, WHR and childhood obesity were 1.23 (95% CI: 1.02–1.49, P=0.033), 1.59 (95% CI: 1.08–2.34, P=0.019) and 1.07 (95% CI: 1.03–1.13, P=0.018), respectively. There was no evidence for association between birth weight and CRC (OR=1.22, 95% CI: 0.89–1.67, P=0.22). Combining these data with a concurrent MR-based analysis for BMI and WHR with CRC risk (totalling to 18 190 cases, 27 617 controls) provided increased support, ORs for BMI and WHR were 1.26 (95% CI: 1.10–1.44, P=7.7 × 10−4) and 1.40 (95% CI: 1.14–1.72, P=1.2 × 10−3), respectively.Conclusions:These data provide further evidence for a strong causal relationship between adiposity and the risk of developing CRC highlighting the urgent need for prevention and treatment of adiposity.


British Journal of Cancer | 2014

Identification of 33 candidate oncogenes by screening for base-specific mutations.

Sari Tuupanen; Ulrika A. Hänninen; Johanna Kondelin; P von Nandelstadh; Tatiana Cajuso; Alexandra E. Gylfe; Riku Katainen; Tomas Tanskanen; Heikki Ristolainen; Jan Böhm; J-P Mecklin; Heikki Järvinen; Laura Renkonen-Sinisalo; C L Andersen; Minna Taipale; Jussi Taipale; Pia Vahteristo; Kaisa Lehti; Esa Pitkänen; Lauri A. Aaltonen

Background:Genes with recurrent codon-specific somatic mutations are likely drivers of tumorigenesis and potential therapeutic targets. Hypermutable cancers may represent a sensitive system for generation and selection of oncogenic mutations.Methods:We utilised exome-sequencing data on 25 sporadic microsatellite-instable (MSI) colorectal cancers (CRCs) and searched for base-specific somatic mutation hotspots.Results:We identified novel mutation hotspots in 33 genes. Fourteen genes displayed mutations in the validation set of 254 MSI CRCs: ANTXR1, MORC2, CEP135, CRYBB1, GALNT9, KRT82, PI15, SLC36A1, CNTF, GLDC, MBTPS1, OR9Q2, R3HDM1 and TTPAL. A database search found examples of the hotspot mutations in multiple cancer types.Conclusions:This work reveals a variety of new recurrent candidate oncogene mutations to be further scrutinised as potential therapeutic targets.


European Journal of Cancer | 2017

Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis.

Sebastian May-Wilson; Amit Sud; Philip J. Law; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Samuli Ripatti; Aarno Palotie; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Mecklin; Nada A. Al-Tassan; Claire Palles; Susan M. Farrington; Maria Timofeeva; Brian F. Meyer; Salma M. Wakil

Background While dietary fat has been established as a risk factor for colorectal cancer (CRC), associations between fatty acids (FAs) and CRC have been inconsistent. Using Mendelian randomisation (MR), we sought to evaluate associations between polyunsaturated (PUFA), monounsaturated (MUFA) and saturated FAs (SFAs) and CRC risk. Methods We analysed genotype data on 9254 CRC cases and 18,386 controls of European ancestry. Externally weighted polygenic risk scores were generated and used to evaluate associations with CRC per one standard deviation increase in genetically defined plasma FA levels. Results Risk reduction was observed for oleic and palmitoleic MUFAs (OROA = 0.77, 95% CI: 0.65–0.92, P = 3.9 × 10−3; ORPOA = 0.36, 95% CI: 0.15–0.84, P = 0.018). PUFAs linoleic and arachidonic acid had negative and positive associations with CRC respectively (ORLA = 0.95, 95% CI: 0.93–0.98, P = 3.7 × 10−4; ORAA = 1.05, 95% CI: 1.02–1.07, P = 1.7 × 10−4). The SFA stearic acid was associated with increased CRC risk (ORSA = 1.17, 95% CI: 1.01–1.35, P = 0.041). Conclusion Results from our analysis are broadly consistent with a pro-inflammatory FA profile having a detrimental effect in terms of CRC risk.


International Journal of Cancer | 2017

Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer.

Henry Rodriguez-Broadbent; Philip J. Law; Amit Sud; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti Pekka Sarin; Samuli Ripatti; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Aarno Palotie; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka Pekka Mecklin; Nada A. Al-Tassan; Claire Palles; Lynn Martin; Ella Barclay; Susan M. Farrington; Maria Timofeeva

While elevated blood cholesterol has been associated with an increased risk of colorectal cancer (CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation (MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol (TC), triglyceride (TG), low‐density lipoprotein (LDL), and high‐density lipoprotein (HDL) as instrumental variables (IV). We calculated MR estimates for each risk factor with CRC using SNP‐CRC associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC was associated with an elevated risk of CRC (odds ratios (OR) per unit SD increase = 1.46, 95% confidence interval [CI]: 1.20–1.79, p = 1.68 × 10−4). The pooled ORs for LDL, HDL, and TG were 1.05 (95% CI: 0.92–1.18, p = 0.49), 0.94 (95% CI: 0.84–1.05, p = 0.27), and 0.98 (95% CI: 0.85–1.12, p = 0.75) respectively. A genetic risk score for 3‐hydoxy‐3‐methylglutaryl‐coenzyme A reductase (HMGCR) to mimic the effects of statin therapy was associated with a reduced CRC risk (OR = 0.69, 95% CI: 0.49–0.99, p = 0.046). This study supports a causal relationship between higher levels of TC with CRC risk, and a further rationale for implementing public health strategies to reduce the prevalence of hyperlipidaemia.


WOS | 2017

Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer

Henry Rodriguez-Broadbent; Philip J. Law; Amit Sud; Kimmo Palin; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Tomas Tanskanen; Johanna Kondelin; Eevi Kaasinen; Antti-Pekka Sarin; Samuli Ripatti; Johan G. Eriksson; Harri Rissanen; Paul Knekt; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Aarno Palotie; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka-Pekka Mecklin; Nada A. Al-Tassan; Claire Palles; Lynn Martin; Ella Barclay; Susan M. Farrington; Maria Timofeeva

While elevated blood cholesterol has been associated with an increased risk of colorectal cancer (CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation (MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol (TC), triglyceride (TG), low‐density lipoprotein (LDL), and high‐density lipoprotein (HDL) as instrumental variables (IV). We calculated MR estimates for each risk factor with CRC using SNP‐CRC associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC was associated with an elevated risk of CRC (odds ratios (OR) per unit SD increase = 1.46, 95% confidence interval [CI]: 1.20–1.79, p = 1.68 × 10−4). The pooled ORs for LDL, HDL, and TG were 1.05 (95% CI: 0.92–1.18, p = 0.49), 0.94 (95% CI: 0.84–1.05, p = 0.27), and 0.98 (95% CI: 0.85–1.12, p = 0.75) respectively. A genetic risk score for 3‐hydoxy‐3‐methylglutaryl‐coenzyme A reductase (HMGCR) to mimic the effects of statin therapy was associated with a reduced CRC risk (OR = 0.69, 95% CI: 0.49–0.99, p = 0.046). This study supports a causal relationship between higher levels of TC with CRC risk, and a further rationale for implementing public health strategies to reduce the prevalence of hyperlipidaemia.


540-546 | 2018

Genome-wide association study and meta-analysis in Northern European populations replicate multiple colorectal cancer risk loci

Tomas Tanskanen; Linda van den Berg; Niko Välimäki; Mervi Aavikko; Eivind Ness-Jensen; Kristian Hveem; Yvonne Wettergren; Elinor Bexe Lindskog; Neeme Tõnisson; Andres Metspalu; Kaisa Silander; Giulia Orlando; Philip J. Law; Sari Tuupanen; Alexandra E. Gylfe; Ulrika A. Hänninen; Tatiana Cajuso; Johanna Kondelin; Antti-Pekka Sarin; Eero Pukkala; Pekka Jousilahti; Veikko Salomaa; Samuli Ripatti; Aarno Palotie; Heikki Järvinen; Laura Renkonen-Sinisalo; Anna Lepistö; Jan Böhm; Jukka-Pekka Mecklin; Nada A. Al-Tassan

Genome‐wide association studies have been successful in elucidating the genetic basis of colorectal cancer (CRC), but there remains unexplained variability in genetic risk. To identify new risk variants and to confirm reported associations, we conducted a genome‐wide association study in 1,701 CRC cases and 14,082 cancer‐free controls from the Finnish population. A total of 9,068,015 genetic variants were imputed and tested, and 30 promising variants were studied in additional 11,647 cases and 12,356 controls of European ancestry. The previously reported association between the single‐nucleotide polymorphism (SNP) rs992157 (2q35) and CRC was independently replicated (p = 2.08 × 10−4; OR, 1.14; 95% CI, 1.06–1.23), and it was genome‐wide significant in combined analysis (p = 1.50 × 10−9; OR, 1.12; 95% CI, 1.08–1.16). Variants at 2q35, 6p21.2, 8q23.3, 8q24.21, 10q22.3, 10q24.2, 11q13.4, 11q23.1, 14q22.2, 15q13.3, 18q21.1, 20p12.3 and 20q13.33 were associated with CRC in the Finnish population (false discovery rate < 0.1), but new risk loci were not found. These results replicate the effects of multiple loci on the risk of CRC and identify shared risk alleles between the Finnish population isolate and outbred populations.


PLOS Genetics | 2018

Exome-wide somatic mutation characterization of small bowel adenocarcinoma

Ulrika A. Hänninen; Riku Katainen; Tomas Tanskanen; Roosa-Maria Plaketti; Riku Laine; Jiri Hamberg; Ari Ristimäki; Eero Pukkala; Minna Taipale; Jukka-Pekka Mecklin; Linda M. Forsström; Esa Pitkänen; Kimmo Palin; Niko Välimäki; Netta Mäkinen; Lauri A. Aaltonen

Small bowel adenocarcinoma (SBA) is an aggressive disease with limited treatment options. Despite previous studies, its molecular genetic background has remained somewhat elusive. To comprehensively characterize the mutational landscape of this tumor type, and to identify possible targets of treatment, we conducted the first large exome sequencing study on a population-based set of SBA samples from all three small bowel segments. Archival tissue from 106 primary tumors with appropriate clinical information were available for exome sequencing from a patient series consisting of a majority of confirmed SBA cases diagnosed in Finland between the years 2003–2011. Paired-end exome sequencing was performed using Illumina HiSeq 4000, and OncodriveFML was used to identify driver genes from the exome data. We also defined frequently affected cancer signalling pathways and performed the first extensive allelic imbalance (AI) analysis in SBA. Exome data analysis revealed significantly mutated genes previously linked to SBA (TP53, KRAS, APC, SMAD4, and BRAF), recently reported potential driver genes (SOX9, ATM, and ARID2), as well as novel candidate driver genes, such as ACVR2A, ACVR1B, BRCA2, and SMARCA4. We also identified clear mutation hotspot patterns in ERBB2 and BRAF. No BRAF V600E mutations were observed. Additionally, we present a comprehensive mutation signature analysis of SBA, highlighting established signatures 1A, 6, and 17, as well as U2 which is a previously unvalidated signature. Finally, comparison of the three small bowel segments revealed differences in tumor characteristics. This comprehensive work unveils the mutational landscape and most frequently affected genes and pathways in SBA, providing potential therapeutic targets, and novel and more thorough insights into the genetic background of this tumor type.

Collaboration


Dive into the Ulrika A. Hänninen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jukka-Pekka Mecklin

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Böhm

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Kimmo Palin

University of Helsinki

View shared research outputs
Researchain Logo
Decentralizing Knowledge