Tony Cox
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tony Cox.
Nucleic Acids Research | 2002
Tim Hubbard; Darren Barker; Ewan Birney; Graham Cameron; Yuan Chen; L. Clark; Tony Cox; James Cuff; V. Curwen; Thomas A. Down; Richard Durbin; E. Eyras; James Gilbert; Martin Hammond; L. Huminiecki; Arek Kasprzyk; Heikki Lehväslaiho; Philip Lijnzaad; Craig Melsopp; Emmanuel Mongin; R. Pettett; M. Pocock; Simon Potter; A. Rust; Esther Schmidt; Stephen M. J. Searle; Guy Slater; J. Smith; W. Spooner; A. Stabenau
The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.
Nature Genetics | 2006
Florian Eckhardt; Jörn Lewin; Rene Cortese; Vardhman K. Rakyan; John Attwood; Matthias Burger; John Burton; Tony Cox; Rob Davies; Thomas A. Down; Carolina Haefliger; Roger Horton; Kevin L. Howe; David K. Jackson; Jan Kunde; Christoph Koenig; Jennifer Liddle; David Niblett; Thomas Otto; Roger Pettett; Stefanie Seemann; Christian Thompson; Tony West; Jane Rogers; Alex Olek; Kurt Berlin; Stephan Beck
DNA methylation is the most stable type of epigenetic modification modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of six annotation categories showed that evolutionarily conserved regions are the predominant sites for differential DNA methylation and that a core region surrounding the transcriptional start site is an informative surrogate for promoter methylation. We find that 17% of the 873 analyzed genes are differentially methylated in their 5′ UTRs and that about one-third of the differentially methylated 5′ UTRs are inversely correlated with transcription. Despite the fact that our study controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought.
Nature | 2011
William C. Skarnes; Barry Rosen; Anthony P. West; Manousos Koutsourakis; Wendy Bushell; Vivek Iyer; Alejandro O. Mujica; Mark G. Thomas; Jennifer Harrow; Tony Cox; David K. Jackson; Jessica Severin; Patrick J. Biggs; Jun Fu; Michael Nefedov; Pieter J. de Jong; A. Francis Stewart; Allan Bradley
Gene targeting in embryonic stem cells has become the principal technology for manipulation of the mouse genome, offering unrivalled accuracy in allele design and access to conditional mutagenesis. To bring these advantages to the wider research community, large-scale mouse knockout programmes are producing a permanent resource of targeted mutations in all protein-coding genes. Here we report the establishment of a high-throughput gene-targeting pipeline for the generation of reporter-tagged, conditional alleles. Computational allele design, 96-well modular vector construction and high-efficiency gene-targeting strategies have been combined to mutate genes on an unprecedented scale. So far, more than 12,000 vectors and 9,000 conditional targeted alleles have been produced in highly germline-competent C57BL/6N embryonic stem cells. High-throughput genome engineering highlighted by this study is broadly applicable to rat and human stem cells and provides a foundation for future genome-wide efforts aimed at deciphering the function of all genes encoded by the mammalian genome.
Nature | 2002
Simon G. Gregory; Mandeep Sekhon; Jacqueline E. Schein; Shaying Zhao; Kazutoyo Osoegawa; Carol Scott; Richard S. Evans; Paul W. Burridge; Tony Cox; Christopher A. Fox; Richard D. Hutton; Ian R. Mullenger; Kimbly J. Phillips; James Smith; Jim Stalker; Glen Threadgold; Ewan Birney; Kristine M. Wylie; Asif T. Chinwalla; John W. Wallis; LaDeana W. Hillier; Jason Carter; Tony Gaige; Sara Jaeger; Colin Kremitzki; Dan Layman; Jason Maas; Rebecca McGrane; Kelly Mead; Rebecca Walker
A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human–mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Wei Wang; Chengyi Lin; Dong Lu; Zeming Ning; Tony Cox; David Melvin; Xiaozhong Wang; Allan Bradley; Pentao Liu
Transposon systems are widely used for generating mutations in various model organisms. PiggyBac (PB) has recently been shown to transpose efficiently in the mouse germ line and other mammalian cell lines. To facilitate PBs application in mammalian genetics, we characterized the properties of the PB transposon in mouse embryonic stem (ES) cells. We first measured the transposition efficiencies of PB transposon in mouse embryonic stem cells. We next constructed a PB/SB hybrid transposon to compare PB and Sleeping Beauty (SB) transposon systems and demonstrated that PB transposition was inhibited by DNA methylation. The excision and reintegration rates of a single PB from two independent genomic loci were measured and its ability to mutate genes with gene trap cassettes was tested. We examined PBs integration site distribution in the mouse genome and found that PB transposition exhibited local hopping. The comprehensive information from this study should facilitate further exploration of the potential of PB and SB DNA transposons in mammalian genetics.
Nucleic Acids Research | 2003
Michele Clamp; D. Andrews; Darren Barker; Paul Bevan; Graham Cameron; Yuting Chen; Louise Clark; Tony Cox; James Cuff; Val Curwen; Thomas A. Down; Richard Durbin; Eduardo Eyras; James Gilbert; Martin Hammond; Tim Hubbard; Arek Kasprzyk; Damian Keefe; Heikki Lehväslaiho; Vishwanath R. Iyer; Craig Melsopp; Emmanuel Mongin; Roger Pettett; Simon Potter; Alistair G. Rust; Esther Schmidt; Steve Searle; Guy Slater; James Smith; William Spooner
The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.
Cell | 2008
Anthony G. Uren; Jaap Kool; Konstantin Matentzoglu; Jeroen de Ridder; Jenny Mattison; Miranda van Uitert; Wendy Lagcher; Daoud Sie; Ellen Tanger; Tony Cox; Marcel J. T. Reinders; Tim Hubbard; Jane Rogers; Jos Jonkers; Lodewyk F. A. Wessels; David J. Adams; Maarten van Lohuizen; Anton Berns
Summary p53 and p19ARF are tumor suppressors frequently mutated in human tumors. In a high-throughput screen in mice for mutations collaborating with either p53 or p19ARF deficiency, we identified 10,806 retroviral insertion sites, implicating over 300 loci in tumorigenesis. This dataset reveals 20 genes that are specifically mutated in either p19ARF-deficient, p53-deficient or wild-type mice (including Flt3, mmu-mir-106a-363, Smg6, and Ccnd3), as well as networks of significant collaborative and mutually exclusive interactions between cancer genes. Furthermore, we found candidate tumor suppressor genes, as well as distinct clusters of insertions within genes like Flt3 and Notch1 that induce mutants with different spectra of genetic interactions. Cross species comparative analysis with aCGH data of human cancer cell lines revealed known and candidate oncogenes (Mmp13, Slamf6, and Rreb1) and tumor suppressors (Wwox and Arfrp2). This dataset should prove to be a rich resource for the study of genetic interactions that underlie tumorigenesis.
Nature Genetics | 2004
David J. Adams; Patrick J. Biggs; Tony Cox; Robert Davies; Louise van der Weyden; Jos Jonkers; James Smith; Bob Plumb; Ruth Taylor; Ichiko Nishijima; Yuejin Yu; Jane Rogers; Allan Bradley
Embryonic stem cell technology revolutionized biology by providing a means to assess mammalian gene function in vivo. Although it is now routine to generate mice from embryonic stem cells, one of the principal methods used to create mutations, gene targeting, is a cumbersome process. Here we describe the indexing of 93,960 ready-made insertional targeting vectors from two libraries. 5,925 of these vectors can be used directly to inactivate genes with an average targeting efficiency of 28%. Combinations of vectors from the two libraries can be used to disrupt both alleles of a gene or engineer larger genomic changes such as deletions, duplications, translocations or inversions. These indexed vectors constitute a public resource (Mutagenic Insertion and Chromosome Engineering Resource; MICER) for high-throughput, targeted manipulation of the mouse genome.
Nature Methods | 2008
Grace Jones; Jim Stalker; Sean Humphray; Anthony P. West; Tony Cox; Jane Rogers; Ian Dunham; Gregory Prelich
Modern genetic analysis requires the development of new resources to systematically explore gene function in vivo. Overexpression screens are a powerful method to investigate genetic pathways, but the goal of routine and comprehensive overexpression screens has been hampered by the lack of systematic libraries. Here we describe the construction of a systematic collection of the Saccharomyces cerevisiae genome in a high-copy vector and its validation in two overexpression screens.
Nature Genetics | 2005
David J. Adams; Emmanouil T. Dermitzakis; Tony Cox; James Smith; Robert Davies; Ruby Banerjee; James K. Bonfield; James C. Mullikin; Yeun Jun Chung; Jane Rogers; Allan Bradley
Inbred mouse strains provide the foundation for mouse genetics. By selecting for phenotypic features of interest, inbreeding drives genomic evolution and eliminates individual variation, while fixing certain sets of alleles that are responsible for the trait characteristics of the strain. Mouse strains 129Sv (129S5) and C57BL/6J, two of the most widely used inbred lines, diverged from common ancestors within the last century, yet very little is known about the genomic differences between them. By comparative genomic hybridization and sequence analysis of 129S5 short insert libraries, we identified substantial structural variation, a complex fine-scale haplotype pattern with a continuous distribution of diversity blocks, and extensive nucleotide variation, including nonsynonymous coding SNPs and stop codons. Collectively, these genomic changes denote the level and direction of allele fixation that has occurred during inbreeding and provide a basis for defining what makes these mouse strains unique.