Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tonya L. Shearer is active.

Publication


Featured researches published by Tonya L. Shearer.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed

Amy L. Lane; Leonard Nyadong; Asiri S. Galhena; Tonya L. Shearer; E. Paige Stout; R. Mitchell Parry; Mark Kwasnik; May D. Wang; Mark E. Hay; Facundo M. Fernández; Julia Kubanek

Organism surfaces represent signaling sites for attraction of allies and defense against enemies. However, our understanding of these signals has been impeded by methodological limitations that have precluded direct fine-scale evaluation of compounds on native surfaces. Here, we asked whether natural products from the red macroalga Callophycus serratus act in surface-mediated defense against pathogenic microbes. Bromophycolides and callophycoic acids from algal extracts inhibited growth of Lindra thalassiae, a marine fungal pathogen, and represent the largest group of algal antifungal chemical defenses reported to date. Desorption electrospray ionization mass spectrometry (DESI-MS) imaging revealed that surface-associated bromophycolides were found exclusively in association with distinct surface patches at concentrations sufficient for fungal inhibition; DESI-MS also indicated the presence of bromophycolides within internal algal tissue. This is among the first examples of natural product imaging on biological surfaces, suggesting the importance of secondary metabolites in localized ecological interactions, and illustrating the potential of DESI-MS in understanding chemically-mediated biological processes.


Molecular Ecology | 2014

Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths

Xaymara M. Serrano; Iliana B. Baums; K. O'Reilly; Tyler B. Smith; Ross Jones; Tonya L. Shearer; Flavia Nunes; Andrew C. Baker

The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth‐generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15–20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep‐water refugia in M. cavernosa is location‐specific, varying among and within geographic locations likely as a consequence of local hydrology.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Conservation of progesterone hormone function in invertebrate reproduction

E. Paige Stout; James J. La Clair; Terry W. Snell; Tonya L. Shearer; Julia Kubanek

Steroids play fundamental roles regulating mammalian reproduction and development. Although sex steroids and their receptors are well characterized in vertebrates and several arthropod invertebrates, little is known about the hormones and receptors regulating reproduction in other invertebrate species. Evolutionary insights into ancient endocrine pathways can be gained by elucidating the hormones and receptors functioning in invertebrate reproduction. Using a combination of genomic analyses, receptor imaging, ligand identification, target elucidation, and exploration of function through receptor knockdown, we now show that comparable progesterone chemoreception exists in the invertebrate monogonont rotifer Brachionus manjavacas, suggesting an ancient origin of the signal transduction systems commonly associated with the development and integration of sexual behavior in mammals.


Scientific Reports | 2016

Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides.

Xaymara M. Serrano; Iliana B. Baums; Tyler B. Smith; Ross Jones; Tonya L. Shearer; Andrew C. Baker

To date, most assessments of coral connectivity have emphasized long-distance horizontal dispersal of propagules from one shallow reef to another. The extent of vertical connectivity, however, remains largely understudied. Here, we used newly-developed and existing DNA microsatellite loci for the brooding coral Porites astreoides to assess patterns of horizontal and vertical connectivity in 590 colonies collected from three depth zones (≤10 m, 15–20 m and ≥25 m) at sites in Florida, Bermuda and the U.S. Virgin Islands (USVI). We also tested whether maternal transmission of algal symbionts (Symbiodinium spp.) might limit effective vertical connectivity. Overall, shallow P. astreoides exhibited high gene flow between Florida and USVI, but limited gene flow between these locations and Bermuda. In contrast, there was significant genetic differentiation by depth in Florida (Upper Keys, Lower Keys and Dry Tortugas), but not in Bermuda or USVI, despite strong patterns of depth zonation in algal symbionts at two of these locations. Together, these findings suggest that P. astreoides is effective at dispersing both horizontally and vertically despite its brooding reproductive mode and maternal transmission of algal symbionts. In addition, these findings might help explain the ecological success reported for P. astreoides in the Caribbean in recent decades.


BMC Biology | 2009

Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera)

Terry W. Snell; Tonya L. Shearer; Hilary A. Smith; Julia Kubanek; Kristin E. Gribble; David B. Mark Welch

BackgroundMate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s). We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating.ResultsA 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units, even at synonymous positions, suggests that the repeats are kept nearly identical through a process of concerted evolution. Information-rich molecules like surface glycoproteins are well adapted for chemical communication and aquatic animals may have evolved signaling systems based on these compounds, whereas insects use cuticular hydrocarbons.ConclusionOwing to its critical role in mating, the mate recognition pheromone gene will be a useful molecular marker for exploring the mechanisms and rates of selection and the evolution of reproductive isolation and speciation using rotifers as a model system. The phylogenetic variation in the mate recognition pheromone gene can now be studied in conjunction with the large amount of ecological and population genetic data being gathered for the Brachionus plicatilis species complex to understand better the evolutionary drivers of cryptic speciation.


Marine Biotechnology | 2011

Exposure to dsRNA Elicits RNA Interference in Brachionus manjavacas (Rotifera)

Terry W. Snell; Tonya L. Shearer; Hilary A. Smith

RNA interference (RNAi) is a powerful technique for functional genomics, yet no studies have reported its successful application to zooplankton. Many zooplankton, particularly microscopic metazoans of phylum Rotifera, have unique life history traits for which genetic investigation has been limited. In this paper, we report the development of RNAi methods for rotifers, with the exogenous introduction of double-stranded RNA (dsRNA) through the use of a lipofection reagent. Transfection with dsRNA for heat shock protein 90, the membrane-associated progesterone receptor, and mitogen-activated protein kinase significantly increased the proportion of non-reproductive females. Additionally, a fluorescence-based lectin binding assay confirmed the significant suppression of four of six glycosylation enzymes that were targeted with dsRNA. Suppression of mRNA transcripts was confirmed with quantitative PCR. Development of RNAi for rotifers promises to enhance the ability for assessing genetic regulation of features critical to their life history and represents a key step toward functional genomics research in zooplankton.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Marine and terrestrial herbivores display convergent chemical ecology despite 400 million years of independent evolution

Douglas B. Rasher; E. Paige Stout; Sebastian Engel; Tonya L. Shearer; Julia Kubanek; Mark E. Hay

Significance We report, for the first time to our knowledge, compounds that specialist marine herbivores use to find their prey. The seaweed Halimeda incrassata produces metabolites that deter feeding by generalist herbivores. However, a specialist sea slug, Elysia tuca, follows these defensive compounds and not only attacks the seaweed but does so preferentially while the seaweed is reproducing. Elysia sequester Halimeda’s chemical defenses (to deter predators) and chloroplasts (becoming photosynthetic). Elysia feeding reduces Halimeda growth by ∼50%, but the alga drops branches occupied by Elysia, possibly to avoid fungal infection associated with herbivory and to rid itself of Elysia. These interactions parallel many involving terrestrial insects and plants, even though marine and terrestrial herbivores have evolved independently for 400 million years. Chemical cues regulate key ecological interactions in marine and terrestrial ecosystems. They are particularly important in terrestrial plant–herbivore interactions, where they mediate both herbivore foraging and plant defense. Although well described for terrestrial interactions, the identity and ecological importance of herbivore foraging cues in marine ecosystems remain unknown. Here we show that the specialist gastropod Elysia tuca hunts its seaweed prey, Halimeda incrassata, by tracking 4-hydroxybenzoic acid to find vegetative prey and the defensive metabolite halimedatetraacetate to find reproductive prey. Foraging cues were predicted to be polar compounds but instead were nonpolar secondary metabolites similar to those used by specialist terrestrial insects. Tracking halimedatetraacetate enables Elysia to increase in abundance by 12- to 18-fold on reproductive Halimeda, despite reproduction in Halimeda being rare and lasting for only ∼36 h. Elysia swarm to reproductive Halimeda where they consume the alga’s gametes, which are resource rich but are chemically defended from most consumers. Elysia sequester functional chloroplasts and halimedatetraacetate from Halimeda to become photosynthetic and chemically defended. Feeding by Elysia suppresses the growth of vegetative Halimeda by ∼50%. Halimeda responds by dropping branches occupied by Elysia, apparently to prevent fungal infection associated with Elysia feeding. Elysia is remarkably similar to some terrestrial insects, not only in its hunting strategy, but also its feeding method, defense tactics, and effects on prey behavior and performance. Such striking parallels indicate that specialist herbivores in marine and terrestrial systems can evolve convergent ecological strategies despite 400 million years of independent evolution in vastly different habitats.


PLOS ONE | 2014

Gene Expression of Corals in Response to Macroalgal Competitors

Tonya L. Shearer; Terry W. Snell; Mark E. Hay

As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens.


Environmental Pollution | 2013

Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A(®) to the Brachionus plicatilis species complex (Rotifera).

Roberto Rico-Martínez; Terry W. Snell; Tonya L. Shearer


Tetrahedron | 2010

Ecological leads for natural product discovery: Novel sesquiterpene hydroquinones from the red macroalga Peyssonnelia sp.

Amy L. Lane; Laurlynn Mular; Elizabeth J. Drenkard; Tonya L. Shearer; Sebastian Engel; Suzanne Fredericq; Craig R. Fairchild; Jacques Prudhomme; Karine G. Le Roch; Mark E. Hay; William G.L. Aalbersberg; Julia Kubanek

Collaboration


Dive into the Tonya L. Shearer's collaboration.

Top Co-Authors

Avatar

Terry W. Snell

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Julia Kubanek

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark E. Hay

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Paige Stout

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hilary A. Smith

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sebastian Engel

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Amy L. Lane

University of North Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas B. Rasher

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge