Tord Jonson
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tord Jonson.
Proceedings of the National Academy of Sciences of the United States of America | 2001
David Gisselsson Nord; Tord Jonson; Åsa Petersén; Bodil Strömbeck; Paola Dal Cin; Mattias Höglund; Felix Mitelman; Fredrik Mertens; Nils Mandahl
Although mechanisms for chromosomal instability in tumors have been described in animal and in vitro models, little is known about these processes in man. To explore cytogenetic evolution in human tumors, chromosomal breakpoint profiles were constructed for 102 pancreatic carcinomas and 140 osteosarcomas, two tumor types characterized by extensive genomic instability. Cases with few chromosomal alterations showed a preferential clustering of breakpoints to the terminal bands, whereas tumors with many changes showed primarily interstitial and centromeric breakpoints. The terminal breakpoint frequency was negatively correlated to telomeric TTAGGG repeat length, and fluorescence in situ hybridization with telomeric TTAGGG probes consistently indicated shortened telomeres and >10% of chromosome ends lacking telomeric signals. Because telomeric dysfunction may lead to formation of unstable ring and dicentric chromosomes, mitotic figures were also evaluated. Anaphase bridges were found in all cases, and fluorescence in situ hybridization demonstrated extensive structural rearrangements of chromosomes, with terminal transferase detection showing fragmented DNA in 5–20% of interphase cells. Less than 2% of cells showed evidence of necrosis or apoptosis, and telomerase was expressed in the majority of cases. Telomeric dysfunction may thus trigger chromosomal fragmentation through persistent bridge-breakage events in pancreatic carcinomas and osteosarcomas, leading to a continuous reorganization of the tumor genome. Telomerase expression is not sufficient for completely stabilizing the chromosome complement but may be crucial for preventing complete genomic deterioration and maintaining cellular survival.
Oncogene | 2005
Markus Heidenblad; David Lindgren; Joris A. Veltman; Tord Jonson; Eija Mahlamäki; Ludmila Gorunova; Ad Geurts van Kessel; Eric F.P.M. Schoenmakers; Mattias Höglund
DNA copy number alterations are believed to play a major role in the development and progression of human neoplasms. Although most of these genomic imbalances have been associated with dysregulation of individual genes, their large-scale transcriptional consequences remain unclear. Pancreatic carcinomas frequently display gene copy number variation of entire chromosomes as well as of chromosomal subregions. These changes range from homozygous deletions to high-level amplifications and are believed to constitute key genetic alterations in the cellular transformation of this tumor type. To investigate the transcriptional consequences of the most drastic genomic changes, that is, genomic amplifications, and to analyse the genome-wide transcriptional effects of DNA copy number changes, we performed expression profiling of 29 pancreatic carcinoma cell lines and compared the results with matching genomic profiling data. We show that a strong association between DNA copy numbers and mRNA expression levels is present in pancreatic cancer, and demonstrate that as much as 60% of the genes within highly amplified genomic regions display associated overexpression. Consequently, we identified 67 recurrently overexpressed genes located in seven precisely mapped commonly amplified regions. The presented findings indicate that more than one putative target gene may be of importance in most pancreatic cancer amplicons.
Cancer Research | 2004
Markus Heidenblad; Eric F.P.M. Schoenmakers; Tord Jonson; Ludmila Gorunova; Joris A. Veltman; Ad Geurts van Kessel; Mattias Höglund
Pancreatic carcinomas display highly complex chromosomal abnormalities, including many structural and numerical aberrations. There is ample evidence indicating that some of these abnormalities, such as recurrent amplifications and homozygous deletions, contribute to tumorigenesis by altering expression levels of critical oncogenes and tumor suppressor genes. To increase the understanding of gene copy number changes in pancreatic carcinomas and to identify key amplification/deletion targets, we applied genome-wide array-based comparative genomic hybridization to 31 pancreatic carcinoma cell lines. Two different microarrays were used, one containing 3,565 fluorescence in situ hybridization-verified bacterial artificial chromosome clones and one containing 25,468 cDNA clones representing 17,494 UniGene clusters. Overall, the analyses revealed a high genomic complexity, with several copy number changes detected in each case. Specifically, 60 amplicons at 32 different locations were identified, most frequently located within 8q (8 cases), 12p (7 cases), 7q (5 cases), 18q (5 cases), 19q (5 cases), 6p (4 cases), and 8p (4 cases). Amplifications of 8q and 12p were mainly clustered at 8q23-24 and 12p11-12, respectively, whereas amplifications on other chromosome arms were more dispersed. Furthermore, our analyses identified several novel homozygously deleted segments located to 9p24, 9p21, 9q32, 10p12, 10q22, 12q24, and 18q23. The individual complexity and aberration patterns varied substantially among cases, i.e., some cell lines were characterized mainly by high-level amplifications, whereas others showed primarily whole-arm imbalances and homozygous deletions. The described amplification and deletion targets are likely to contain genes important in pancreatic tumorigenesis.
British Journal of Cancer | 2002
David Gisselsson; Tord Jonson; C Yu; C Martins; Nils Mandahl; Joop Wiegant; Yuesheng Jin; Fredrik Mertens; C Jin
Carcinomas of the head and neck typically exhibit complex chromosome aberrations but the underlying mutational mechanisms remain obscure. Evaluation of cell division dynamics in low-passage cell lines from three benign and five malignant head and neck tumours revealed a strong positive correlation between multipolarity of the mitotic spindle and the formation of bridges at anaphase in both benign and malignant tumours. Cells exhibiting a high rate of mitotic abnormalities also showed several chromosome termini lacking TTAGGG repeats and a high frequency of dicentric chromosomes. Multicolour karyotyping demonstrated a preferential involvement in structural rearrangements of chromosomes with deficient telomeres. The majority of malignant, mitotically unstable tumours expressed the reverse transcriptase subunit of telomerase. These data indicate that some of the genomic instability in head and neck tumours is initiated by telomere dysfunction, leading to the formation of dicentric chromosomes. These form chromosome bridges at mitosis that could prevent the normal anaphase-telophase transition. In turn, this may cause an accumulation of centrosomes and mitotic multipolarity. Telomerase expression does not confer total stability to the tumour genome but could be crucial for moderating the rate of chromosomal evolution.
BMC Medical Genomics | 2008
Markus Heidenblad; David Lindgren; Tord Jonson; Fredrik Liedberg; Srinivas Veerla; Gunilla Chebil; Sigurdur Gudjonsson; Åke Borg; Wiking Månsson; Mattias Höglund
BackgroundUrothelial carcinoma (UC) is characterized by nonrandom chromosomal aberrations, varying from one or a few changes in early-stage and low-grade tumors, to highly rearranged karyotypes in muscle-invasive lesions. Recent array-CGH analyses have shed further light on the genomic changes underlying the neoplastic development of UC, and have facilitated the molecular delineation amplified and deleted regions to the level of specific candidate genes. In the present investigation we combine detailed genomic information with expression information to identify putative target genes for genomic amplifications.MethodsWe analyzed 38 urothelial carcinomas by whole-genome tiling resolution array-CGH and high density expression profiling to identify putative target genes in common genomic amplifications. When necessary expression profiling was complemented with Q-PCR of individual genes.ResultsThree genomic segments were frequently and exclusively amplified in high grade tumors; 1q23, 6p22 and 8q22, respectively. Detailed mapping of the 1q23 segment showed a heterogeneous amplification pattern and no obvious commonly amplified region. The 6p22 amplicon was defined by a 1.8 Mb core region present in all amplifications, flanked both distally and proximally by segments amplified to a lesser extent. By combining genomic profiles with expression profiles we could show that amplification of E2F3, CDKAL1, SOX4, and MBOAT1 as well as NUP153, AOF1, FAM8A1 and DEK in 6p22 was associated with increased gene expression. Amplification of the 8q22 segment was primarily associated with YWHAZ (14-3-3-zeta) and POLR2K over expression. The possible importance of the YWHA genes in the development of urothelial carcinomas was supported by another recurrent amplicon paralogous to 8q22, in 2p25, where increased copy numbers lead to enhanced expression of YWHAQ (14-3-3-theta). Homozygous deletions were identified at 10 different genomic locations, most frequently affecting CDKN2A/CDKN2B in 9p21 (32%). Notably, the latter occurred mutually exclusive with 6p22 amplifications.ConclusionThe presented data indicates 6p22 as a composite amplicon with more than one possible target gene. The data also suggests that amplification of 6p22 and homozygous deletions of 9p21 may have complementary roles. Furthermore, the analysis of paralogous regions that showed genomic amplification indicated altered expression of YWHA (14-3-3) genes as important events in the development of UC.
Genes, Chromosomes and Cancer | 1999
Tord Jonson; Ludmila Gorunova; Sigmund Dawiskiba; ke Andrn-Sandberg; Gran Stenman; Peter ten Dijke; Bertil Johansson; Mattias Hglund
SMAD4 (DPC4) is part of the TGFB signaling pathway and is frequently inactivated in pancreatic carcinomas. TGFB signals from the membrane to the nucleus via SMAD proteins. TGFB receptor activation results in SMAD2 and SMAD3 phosphorylation, which then form heteromeric complexes with SMAD4. Inhibitory SMADs, SMAD6 and SMAD7, can prevent TGFB signaling by interacting either with the receptor or with SMAD2 and SMAD3. The encoding sequences for these proteins are organized in two gene clusters, one at 18q21 (SMAD2, SMAD4, and SMAD7) and the other at 15q21–22 (SMAD3 and SMAD6). Losses of 15q and 18q material are frequent in pancreatic carcinomas, and in order to map the extent of 15q and 18q deletions and to investigate further the involvement of SMAD4 and the possible function of SMAD2 and SMAD3 as tumor suppressor genes in pancreatic carcinoma, we performed loss of heterozygosity studies as well as mutation and expression analyses of SMAD4, SMAD2, and SMAD3 in 13 low‐passage cell lines from 12 pancreatic carcinoma patients. To investigate possible amplifications of SMAD6 and SMAD7, the genomic organization and the expression levels of these genes were analyzed. One tumor with homozygous loss of SMAD4 was detected, and mutations of this gene were found in four of the 12 carcinomas; no SMAD2 or SMAD3 inactivating genomic alterations were found. In none of the cases was transcriptional silencing seen. No genomic amplifications, mutations, or increased expression of SMAD6 and SMAD7 were detected. These results suggest that functional abrogation of SMAD2 or SMAD3 and increased expression of SMAD6 or SMAD7 are infrequent in pancreatic carcinomas and further stress the particular importance of SMAD4 inactivation in pancreatic carcinogenesis. Genes Chromosomes Cancer 24:62–71, 1999.
Genes, Chromosomes and Cancer | 2002
Markus Heidenblad; Tord Jonson; Eija Mahlamäki; Ludmila Gorunova; Ritva Karhu; Bertil Johansson; Mattias Höglund
Previous cytogenetic and comparative genomic hybridization (CGH) analyses have shown that the gain of chromosome arm 12p is frequent in pancreatic carcinomas. We investigated 15 pancreatic carcinoma cell lines using CGH, fluorescence in situ hybridization (FISH), and semiquantitative polymerase chain reaction (PCR) to characterize 12p amplifications in detail. The CGH analysis revealed gains of 12p in four of the cell lines and local amplification within 12p11–12 in six cell lines. By FISH analysis, using precisely mapped YAC clones, the commonly amplified region was found to be approximately 5 Mb. The amplified segment extended from YAC 753f12, covering the KRAS2 locus, to YAC 891f1, close to the centromere. A semiquantitative PCR methodology was used to estimate genomic copy numbers of 14 precisely mapped expressed sequence tags (ESTs) and sequence‐tagged sites, located within this interval. The level of amplification ranged from two‐ to 12‐fold. The produced gene copy profiles revealed a 3.5‐Mb segment with various local amplifications. This region includes KRAS2 and ranges from D12S1617 to sts‐N38796. Two of the cell lines (primary and metastatic tumor from the same patient) showed amplification peaks within the distal region of this segment, two had peaks within the proximal region, one showed subpeaks in both regions, and one displayed amplification of the entire region. Chromosome segment‐specific cDNA array analysis of 29 expressed sequences within the whole interval between D12S1617 and sts‐N38796 indicated overexpression of four ESTs, two corresponding to DEC2 and PPFIBP1, and two to ESTs with unknown function. Expression analysis of these and of KRAS2 showed specific overexpression in the six cell lines with local 12p amplifications. These findings indicate two target regions within the 3.5‐Mb segment in 12p11–12, one proximal including PPFIBP1, and one distal including KRAS2.
Clinical Cancer Research | 2007
Yuesheng Jin; Ylva Stewénius; David Lindgren; Attila Frigyesi; Olga Calcagnile; Tord Jonson; Anna Edqvist; Nina Larsson; Lena Maria Lundberg; Gunilla Chebil; Fredrik Liedberg; Sigurdur Gudjonsson; Wiking Månsson; Mattias Höglund; David Gisselsson
Purpose: Chromosomal instability (CIN) is believed to have an important role in the pathogenesis of urothelial cancer (UC). The aim of this study was to evaluate whether disturbances of mitotic segregation contribute to CIN in UC, if these processes have any effect on the course of disease, and how deregulation of these mechanisms affects tumor cell growth. Experimental Design: We developed molecular cytogenetic methods to classify mitotic segregation abnormalities in a panel of UC cell lines. Mitotic instabilities were then scored in biopsies from 52 UC patients and compared with the outcome of tumor disease. Finally, UC cells were exposed in vitro to a telomerase inhibitor to assess how this affects mitotic stability and cell proliferation. Results: Three distinct chromosome segregation abnormalities were identified: (a) telomere dysfunction, which triggers structural rearrangements and loss of chromosomes through anaphase bridging; (b) sister chromatid nondisjunction, which generates discrete chromosomal copy number variations; and (c) supernumerary centrosomes, which cause dramatic shifts in chromosome copy number through multipolar cell division. Chromosome segregation errors were already present in preinvasive tumors and a high rate mitotic instability was an independent predictor of poor survival. However, induction of even higher levels of the same segregation abnormalities in UC cells by telomerase inhibition in vitro led to reduced tumor cell proliferation and clonogenic survival. Conclusion: Several distinct chromosome segregation errors contribute to CIN in UC, and the rate of such mitotic errors has a significant effect on the clinical course. Efficient tumor cell proliferation may depend on the tight endogenous control of these processes.
Nature Communications | 2015
Linda Holmquist Mengelbier; Jenny Karlsson; David Lindgren; Anders Valind; Henrik Lilljebjörn; Caroline Jansson; Daniel Bexell; Noémie Braekeveldt; Adam Ameur; Tord Jonson; Hanna Göransson Kultima; Anders Isaksson; Jurate Asmundsson; Rogier Versteeg; Marianne Rissler; Thoas Fioretos; Bengt Sandstedt; Anna Börjesson; Torbjörn Backman; Niklas Pal; Ingrid Øra; Markus Mayrhofer; David Gisselsson
Genetic differences among neoplastic cells within the same tumour have been proposed to drive cancer progression and treatment failure. Whether data on intratumoral diversity can be used to predict clinical outcome remains unclear. We here address this issue by quantifying genetic intratumoral diversity in a set of chemotherapy-treated childhood tumours. By analysis of multiple tumour samples from seven patients we demonstrate intratumoral diversity in all patients analysed after chemotherapy, typically presenting as multiple clones within a single millimetre-sized tumour sample (microdiversity). We show that microdiversity often acts as the foundation for further genome evolution in metastases. In addition, we find that microdiversity predicts poor cancer-specific survival (60%; P=0.009), independent of other risk factors, in a cohort of 44 patients with chemotherapy-treated childhood kidney cancer. Survival was 100% for patients lacking microdiversity. Thus, intratumoral genetic diversity is common in childhood cancers after chemotherapy and may be an important factor behind treatment failure.
International Journal of Cancer | 2015
Noémie Braekeveldt; Caroline Wigerup; David Gisselsson; Sofie Mohlin; My Merselius; Siv Beckman; Tord Jonson; Anna Börjesson; Torbjörn Backman; Irene Tadeo; Ana P. Berbegall; Ingrid Øra; Samuel Navarro; Rosa Noguera; Sven Påhlman; Daniel Bexell
Neuroblastoma is a childhood tumour with heterogeneous characteristics and children with metastatic disease often have a poor outcome. Here we describe the establishment of neuroblastoma patient‐derived xenografts (PDXs) by orthotopic implantation of viably cryopreserved or fresh tumour explants of patients with high risk neuroblastoma into immunodeficient mice. In vivo tumour growth was monitored by magnetic resonance imaging and fluorodeoxyglucose–positron emission tomography. Neuroblastoma PDXs retained the undifferentiated histology and proliferative capacity of their corresponding patient tumours. The PDXs expressed neuroblastoma markers neural cell adhesion molecule, chromogranin A, synaptophysin and tyrosine hydroxylase. Whole genome genotyping array analyses demonstrated that PDXs retained patient‐specific chromosomal aberrations such as MYCN amplification, deletion of 1p and gain of chromosome 17q. Thus, neuroblastoma PDXs recapitulate the hallmarks of high‐risk neuroblastoma in patients. PDX‐derived cells were cultured in serum‐free medium where they formed free‐floating neurospheres, expressed neuroblastoma gene markers MYCN, CHGA, TH, SYP and NPY, and retained tumour‐initiating and metastatic capacity in vivo. PDXs showed much higher degree of infiltrative growth and distant metastasis as compared to neuroblastoma SK‐N‐BE(2)c cell line‐derived orthotopic tumours. Importantly, the PDXs presented with bone marrow involvement, a clinical feature of aggressive neuroblastoma. Thus, neuroblastoma PDXs serve as clinically relevant models for studying and targeting high‐risk metastatic neuroblastoma.