Xiaogang Hou
Children's Hospital Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaogang Hou.
Journal of Pediatric Surgery | 2013
Daniel E. Levin; Erik R. Barthel; Allison L. Speer; Frederic G. Sala; Xiaogang Hou; Yasuhiro Torashima; Tracy C. Grikscheit
PURPOSE Tissue-engineered small intestine (TESI) represents a potential cure for short bowel syndrome (SBS). We previously reported full-thickness intestine formation using an organoid units-on-scaffold approach in rodent and swine models. Transplanted intestinal xenografts have been documented to survive from human fetal tissue but not from postnatal tissue. We now present the first report of human TESI from postnatal tissue. METHODS Organoid units (OU) were prepared from human small bowel resection specimens, loaded onto biodegradable scaffolds and implanted into NOD/SCID gamma chain-deficient mice. After 4 weeks, TESI was harvested and immunostained for β2-microglobulin to identify human tissue, villin for enterocytes, lysozyme for Paneth cells, chromogranin-A for enteroendocrine cells, mucin-2 for goblet cells, smooth muscle actin and desmin to demonstrate muscularis, and S-100 for nerves. RESULTS All TESI was of human origin. Immunofluorescence staining of human TESI reveals the presence of all four differentiated cell types of mature human small intestine, in addition to the muscularis and the supporting intestinal subepithelial myofibroblasts. Nerve tissue is also present. CONCLUSIONS Our technique demonstrates survival, growth, and differentiation of postnatally derived human small intestinal OU into full thickness TESI in murine hosts. This regenerative medicine strategy may eventually assist in the treatment of SBS.
Journal of Visualized Experiments | 2012
Erik R. Barthel; Allison L. Speer; Daniel E. Levin; Frederic G. Sala; Xiaogang Hou; Yasuhiro Torashima; Clarence M. Wigfall; Tracy C. Grikscheit
Tissue-engineered small intestine (TESI) has successfully been used to rescue Lewis rats after massive small bowel resection, resulting in return to preoperative weights within 40 days.(1) In humans, massive small bowel resection can result in short bowel syndrome, a functional malabsorptive state that confers significant morbidity, mortality, and healthcare costs including parenteral nutrition dependence, liver failure and cirrhosis, and the need for multivisceral organ transplantation.(2) In this paper, we describe and document our protocol for creating tissue-engineered intestine in a mouse model with a multicellular organoid units-on-scaffold approach. Organoid units are multicellular aggregates derived from the intestine that contain both mucosal and mesenchymal elements,(3) the relationship between which preserves the intestinal stem cell niche.(4) In ongoing and future research, the transition of our technique into the mouse will allow for investigation of the processes involved during TESI formation by utilizing the transgenic tools available in this species.(5)The availability of immunocompromised mouse strains will also permit us to apply the technique to human intestinal tissue and optimize the formation of human TESI as a mouse xenograft before its transition into humans. Our method employs good manufacturing practice (GMP) reagents and materials that have already been approved for use in human patients, and therefore offers a significant advantage over approaches that rely upon decellularized animal tissues. The ultimate goal of this method is its translation to humans as a regenerative medicine therapeutic strategy for short bowel syndrome.
Regenerative Medicine | 2012
Erik R. Barthel; Daniel E. Levin; Allison L. Speer; Frederic G. Sala; Yasuhiro Torashima; Xiaogang Hou; Tracy C. Grikscheit
AIM Loss of colon reservoir function after colectomy can adversely affect patient outcomes. In previous work, human fetal intestinal cells developed epithelium without mesenchyme following implantation in mice. However, for humans, postnatal tissue would be the preferred donor source. We generated tissue-engineered colon (TEC) from postnatal human organoid units. MATERIALS & METHODS Organoid units were prepared from human colon waste specimens, loaded onto biodegradable scaffolds and implanted into immunocompromised mice. After 4 weeks, human TEC was harvested. Immunofluorescence staining confirmed human origin, identified differentiated epithelial cell types and verified the presence of supporting mesenchyme. RESULTS Human TEC demonstrated a simple columnar epithelium. Immunofluorescence staining demonstrated human origin and the three differentiated cell types of mature colon epithelium. Key mesenchymal components (smooth muscle, intestinal subepithelial myofibroblasts and ganglion cells) were seen. CONCLUSION Colon can form from human progenitor cells on a scaffold in a mouse host. This proof-of-concept experiment is an important step in transitioning TEC to human therapy.
Methods of Molecular Biology | 2013
Daniel E. Levin; Frederic G. Sala; Erik R. Barthel; Allison L. Speer; Xiaogang Hou; Yasuhiro Torashima; Tracy C. Grikscheit
Here, we describe the use of a mouse model as a living bioreactor for the generation of tissue-engineered small intestine. Small intestine is harvested from donor mice with subsequent isolation of organoid units (a cluster of mesenchymal and epithelial cells). Some of these organoid units contain pluripotent stem cells with a preserved relationship with the mesenchymal stem cell niche. A preparation of organoid units is seeded onto a biodegradable scaffold and implanted intraperitoneally within the omentum of the host animal. The cells are nourished initially via imbibition until neovascularization occurs. This technique allows the growth of fully differentiated epithelium (composed of Paneth cells, goblet cells, enterocytes and enteroendocrine cells), muscle, nerve, and blood vessels of donor origin. Variations of this technique have been used to generate tissue-engineered stomach, large intestine, and esophagus. The variations include harvest technique, length of digestion, and harvest times.
Journal of Tissue Engineering and Regenerative Medicine | 2016
Yasuhiro Torashima; Daniel E. Levin; Erik R. Barthel; Allison L. Speer; Frederic G. Sala; Xiaogang Hou; Tracy C. Grikscheit
Short bowel syndrome (SBS) is a morbid and mortal condition characterized in most patients by insufficient intestinal surface area. Current management strategies are inadequate, but tissue‐engineered small intestine (TESI) offers a potential therapy. A barrier to translation of TESI is the generation of scalable mucosal surface area to significantly increase nutritional absorption. Fibroblast growth factor 10 (Fgf10) is a critical growth factor essential for the development of the gastrointestinal tract. We hypothesized that overexpression of Fgf10 would improve the generation of TESI. Organoid units, the multicellular donor tissue that forms TESI, were derived from Rosa26rtTA/+, tet(o)Fgf10/– or Fgf10Mlc‐nlacZ‐v24 (hereafter called Fgf10lacZ ) mice. These were implanted into the omentum of NOD/SCID γ‐chain‐deficient mice and induced with doxycycline in the case of tet(o)Fgf10/–. Resulting TESI were explanted at 4 weeks and studied by histology, quantitative RT–PCR and immunofluorescence. Four weeks after implantation, Fgf10 overexpressing TESI was larger and weighed more than the control tissues. Within the mucosa, the villus height was significantly longer and crypts contained a greater percentage of proliferating epithelial cells. A fully differentiated intestinal epithelium with enterocytes, goblet cells, enteroendocrine cells and Paneth cells was identified in the Fgf10‐overexpressing TESI, comparable to native small intestine. β‐Galactosidase expression was found in both the epithelium and the mesenchyme of the TESI derived from the Fgf10LacZ duodenum. However, this was not the case with TESI generated from jejunum and ileum. We conclude that Fgf10 enhances the formation of TESI. Copyright
PLOS ONE | 2016
Christopher R. Schlieve; Salvador Garcia Mojica; Kathleen A. Holoyda; Xiaogang Hou; Kathryn L. Fowler; Tracy C. Grikscheit
Background Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. Methods VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Results Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Conclusions Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future cell therapies for intestinal dysfunction or disease.
Tissue Engineering Part A | 2016
Minna M. Wieck; Wael El-Nachef; Xiaogang Hou; Ryan G. Spurrier; Kathleen A. Holoyda; Kathy A. Schall; Salvador Garcia Mojica; Malie K. Collins; Andrew Trecartin; Zhi Cheng; Philip K. Frykman; Tracy C. Grikscheit
PURPOSE Tissue-engineered colon (TEC) might potentially replace absent or injured large intestine, but the enteric nervous system (ENS), a key component, has not been investigated. In various enteric neuropathic diseases in which the TEC is derived from aganglionic donor colon, the resulting construct might also be aganglionic, limiting tissue engineering applications in conditions such as Hirschsprung disease (HD). We hypothesized that TEC might contain a diverse population of enteric neuronal subtypes, and that aganglionic TEC can be populated by neurons and glia when supplemented with ENS progenitor cells in the form of neurospheres. MATERIALS AND METHODS Human and murine organoid units (OU) and multicellular clusters containing epithelium and mesenchyme were isolated from both mouse and human donor tissues, including from normally innervated and aganglionic colon. The OU were seeded onto a biodegradable scaffold and implanted within a host mouse, resulting in the growth of TEC. Aganglionic murine and human OU were supplemented with cultured neurospheres to populate the absent ENS not provided by the OU to rescue the HD phenotype. RESULTS TEC demonstrated abundant smooth muscle and clusters of neurons and glia beneath the epithelium and deeper within the mesenchyme. Motor and afferent neuronal subtypes were identified in TEC. Aganglionic OU formed TEC with absent neural elements, but neurons and glia were abundant when aganglionic OU were supplemented with ENS progenitor cells. CONCLUSION Murine and human TEC contain key components of the ENS that were not previously identified, including glia, neurons, and fundamental neuronal subtypes. TEC derived from aganglionic colon can be populated with neurons and glia when supplemented with neurospheres. Combining tissue engineering and cellular replacement therapies represents a new strategy for treating enteric neuropathies, particularly HD.
Stem cell reports | 2017
Christopher R. Schlieve; Kathryn L. Fowler; Matthew E. Thornton; Sha Huang; Ibrahim Hajjali; Xiaogang Hou; Brendan H. Grubbs; Jason R. Spence; Tracy C. Grikscheit
Summary Acquired or congenital disruption in enteric nervous system (ENS) development or function can lead to significant mechanical dysmotility. ENS restoration through cellular transplantation may provide a cure for enteric neuropathies. We have previously generated human pluripotent stem cell (hPSC)-derived tissue-engineered small intestine (TESI) from human intestinal organoids (HIOs). However, HIO-TESI fails to develop an ENS. The purpose of our study is to restore ENS components derived exclusively from hPSCs in HIO-TESI. hPSC-derived enteric neural crest cell (ENCC) supplementation of HIO-TESI establishes submucosal and myenteric ganglia, repopulates various subclasses of neurons, and restores neuroepithelial connections and neuron-dependent contractility and relaxation in ENCC-HIO-TESI. RNA sequencing identified differentially expressed genes involved in neurogenesis, gliogenesis, gastrointestinal tract development, and differentiated epithelial cell types when ENS elements are restored during in vivo development of HIO-TESI. Our findings validate an effective approach to restoring hPSC-derived ENS components in HIO-TESI and may implicate their potential for the treatment of enteric neuropathies.
Stem Cells Translational Medicine | 2017
Nirmala Mavila; Andrew Trecartin; Ryan G. Spurrier; Yi Xiao; Xiaogang Hou; David James; Xiaowei Fu; Brian Truong; Clara Wang; Gerald S. Lipshutz; Kasper S. Wang; Tracy C. Grikscheit
Liver disease affects large numbers of patients, yet there are limited treatments available to replace absent or ineffective cellular function of this crucial organ. Donor scarcity and the necessity for immunosuppression limit one effective therapy, orthotopic liver transplantation. But in some conditions such as inborn errors of metabolism or transient states of liver insufficiency, patients may be salvaged by providing partial quantities of functional liver tissue. After transplanting multicellular liver organoid units composed of a heterogeneous cellular population that includes adult stem and progenitor cells, both mouse and human tissue‐engineered liver (TELi) form in vivo. TELi contains normal liver components such as hepatocytes with albumin expression, CK19‐expressing bile ducts and vascular structures with α‐smooth muscle actin expression, desmin‐expressing stellate cells, and CD31‐expressing endothelial cells. At 4 weeks, TELi contains proliferating albumin‐expressing cells and identification of β2‐microglobulin‐expressing cells demonstrates that the majority of human TELi is composed of transplanted human cells. Human albumin is detected in the host mouse serum, indicating in vivo secretory function. Liquid chromatography/mass spectrometric analysis of mouse serum after debrisoquine administration is followed by a significant increase in the level of the human metabolite, 4‐OH‐debrisoquine, which supports the metabolic and xenobiotic capability of human TELi in vivo. Implanted TELi grew in a mouse model of inducible liver failure. Stem Cells Translational Medicine 2017;6:238–248
Cellular and molecular gastroenterology and hepatology | 2017
Minna M. Wieck; Christopher R. Schlieve; Matthew E. Thornton; Kathryn L. Fowler; Mubina A. Isani; Christa N. Grant; Ashley E. Hilton; Xiaogang Hou; Brendan H. Grubbs; Mark R. Frey; Tracy C. Grikscheit
Background & Aims For patients with short-bowel syndrome, intestinal adaptation is required to achieve enteral independence. Although adaptation has been studied extensively in animal models, little is known about this process in human intestine. We hypothesized that analysis of matched specimens with and without luminal flow could identify new potential therapeutic pathways. Methods Fifteen paired human ileum samples were collected from children aged 2–20 months during ileostomy-reversal surgery after short-segment intestinal resection and diversion. The segment exposed to enteral feeding was denoted as fed, and the diverted segment was labeled as unfed. Morphometrics and cell differentiation were compared histologically. RNA Sequencing and Gene Ontology Enrichment Analysis identified over-represented and under-represented pathways. Immunofluorescence staining and Western blot evaluated proteins of interest. Paired data were compared with 1-tailed Wilcoxon rank-sum tests with a P value less than .05 considered significant. Results Unfed ileum contained shorter villi, shallower crypts, and fewer Paneth cells. Genes up-regulated by the absence of mechanoluminal stimulation were involved in digestion, metabolism, and transport. Messenger RNA expression of LGR5 was significantly higher in unfed intestine, accompanied by increased levels of phosphorylated signal transducer and activator of transcription 3 protein, and CCND1 and C-MYC messenger RNA. However, decreased proliferation and fewer LGR5+, OLFM4+, and SOX9+ intestinal stem cells (ISCs) were observed in unfed ileum. Conclusions Even with sufficient systemic caloric intake, human ileum responds to the chronic absence of mechanoluminal stimulation by up-regulating brush-border enzymes, transporters, structural genes, and ISC genes LGR5 and ASCL2. These data suggest that unfed intestine is primed to replenish the ISC population upon re-introduction of enteral feeding. Therefore, the elucidation of pathways involved in these processes may provide therapeutic targets for patients with intestinal failure. RNA sequencing data are available at Gene Expression Omnibus series GSE82147.