Travis Nieusma
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Travis Nieusma.
Science | 2013
Joseph G. Jardine; Jean-Philippe Julien; Sergey Menis; Takayuki Ota; Oleksandr Kalyuzhniy; Andrew T. McGuire; Devin Sok; Po-Ssu Huang; Skye MacPherson; Meaghan Jones; Travis Nieusma; John C. Mathison; David Baker; Andrew B. Ward; Dennis R. Burton; Leonidas Stamatatos; David Nemazee; Ian A. Wilson; William R. Schief
Building Better Vaccines In the past few years, several highly potent, broadly neutralizing antibodies (bNAbs) specific for the gp120 envelope protein of HIV-1 have been discovered. The goal of this work is to use this information to inform the design of vaccines that are able to induce such antibodies (see the Perspective by Crowe). However, because of extensive somatic hypermutation, the epitope bound by these antibodies often does not bind to the germline sequence. Jardine et al. (p. 711, published online 28 March; see the cover) used computational analysis and in vitro screening to design an immunogen that could bind to VRC01-class bNAbs and to their germline precursors. Georgiev et al. (p. 751) took advantage of the fact that only four sites on the HIV viral envelope protein seem to bind bNAbs, and sera that contain particular bNAbs show characteristic patterns of neutralization. An algorithm was developed that could successfully delineate the neutralization specificity of antibodies present in polyclonal sera from HIV-infected patients. Structural knowledge of broadly neutralizing antibodies against HIV-1 guides the design of an immunogen to elicit them. Vaccine development to induce broadly neutralizing antibodies (bNAbs) against HIV-1 is a global health priority. Potent VRC01-class bNAbs against the CD4 binding site of HIV gp120 have been isolated from HIV-1–infected individuals; however, such bNAbs have not been induced by vaccination. Wild-type gp120 proteins lack detectable affinity for predicted germline precursors of VRC01-class bNAbs, making them poor immunogens to prime a VRC01-class response. We employed computation-guided, in vitro screening to engineer a germline-targeting gp120 outer domain immunogen that binds to multiple VRC01-class bNAbs and germline precursors, and elucidated germline binding crystallographically. When multimerized on nanoparticles, this immunogen (eOD-GT6) activates germline and mature VRC01-class B cells. Thus, eOD-GT6 nanoparticles have promise as a vaccine prime. In principle, germline-targeting strategies could be applied to other epitopes and pathogens.
Science | 2013
Leopold Kong; Erick Giang; Travis Nieusma; Rameshwar U. Kadam; Kristin E. Cogburn; Yuanzi Hua; Xiaoping Dai; Robyn L. Stanfield; Dennis R. Burton; Andrew B. Ward; Ian A. Wilson; Mansun Law
Deciphering Hepatitis C Hepatitis C virus is a major cause of liver disease and cancer. Two envelope glycoproteins, E1 and E2, form a heterodimer that facilitates infection. The envelope proteins have been difficult to crystallize, hindering vaccine development. Kong et al. (p. 1090) designed an E2 core glycoprotein construct and solved the crystal structure of the glycosylated protein in complex with a broadly neutralizing antibody. The host cell receptor binding site was identified by electron microscopy and mutagenesis. The findings should help in future drug and vaccine design. The structure of a key viral surface protein provides insight for drug and vaccine development. Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.
Journal of Virology | 2012
Leopold Kong; Erick Giang; Travis Nieusma; Justin B. Robbins; Marc C. Deller; Robyn L. Stanfield; Ian A. Wilson; Mansun Law
ABSTRACT We have determined the crystal structure of the broadly neutralizing antibody (bnAb) AP33, bound to a peptide corresponding to hepatitis C virus (HCV) E2 envelope glycoprotein antigenic site 412 to 423. Comparison with bnAb HCV1 bound to the same epitope reveals a different angle of approach to the antigen by bnAb AP33 and slight variation in its β-hairpin conformation of the epitope. These structures establish two different modes of binding to E2 that antibodies adopt to neutralize diverse HCV.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Jean-Philippe Julien; Jeong Hyun Lee; Gabriel Ozorowski; Yuanzi Hua; Alba Torrents de la Peña; Steven W. de Taeye; Travis Nieusma; Albert Cupo; Anila Yasmeen; Michael Golabek; Pavel Pugach; Per Johan Klasse; John P. Moore; Rogier W. Sanders; Andrew B. Ward; Ian A. Wilson
Significance A successful HIV-1 vaccine should generate an immune response capable of neutralizing the enormous diversity of globally circulating viruses. Here, we report the discovery and characterization of two clade C recombinant envelope glycoprotein trimers with native-like structural and antigenic properties, including epitopes for all known classes of broadly neutralizing antibodies (bnAbs). Together with previously described trimers from other clades, these two new trimers will aid in immunization strategies designed to induce bnAbs to HIV-1. A key challenge in the quest toward an HIV-1 vaccine is design of immunogens that can generate a broadly neutralizing antibody (bnAb) response against the enormous sequence diversity of the HIV-1 envelope glycoprotein (Env). We previously demonstrated that a recombinant, soluble, fully cleaved SOSIP.664 trimer based on the clade A BG505 sequence is a faithful antigenic and structural mimic of the native trimer in its prefusion conformation. Here, we sought clade C native-like trimers with comparable properties. We identified DU422 and ZM197M SOSIP.664 trimers as being appropriately thermostable (Tm of 63.4 °C and 62.7 °C, respectively) and predominantly native-like, as determined by negative-stain electron microscopy (EM). Size exclusion chromatography, ELISA, and surface plasmon resonance further showed that these trimers properly display epitopes for all of the major bnAb classes, including quaternary-dependent, trimer-apex (e.g., PGT145) and gp120/gp41 interface (e.g., PGT151) epitopes. A cryo-EM reconstruction of the ZM197M SOSIP.664 trimer complexed with VRC01 Fab against the CD4 binding site at subnanometer resolution revealed a striking overall similarity to its BG505 counterpart with expected local conformational differences in the gp120 V1, V2, and V4 loops. These stable clade C trimers contribute additional diversity to the pool of native-like Env immunogens as key components of strategies to induce bnAbs to HIV-1.
Immunity | 2017
Jeong Hyun Lee; Raiees Andrabi; Ching-Yao Su; Anila Yasmeen; Jean-Philippe Julien; Leopold Kong; Nicholas C. Wu; Ryan McBride; Devin Sok; Matthias Pauthner; Christopher A. Cottrell; Travis Nieusma; Claudia Blattner; James C. Paulson; Per Johan Klasse; Ian A. Wilson; Dennis R. Burton; Andrew B. Ward
&NA; Broadly neutralizing antibodies (bnAbs) to HIV delineate vaccine targets and are prophylactic and therapeutic agents. Some of the most potent bnAbs target a quaternary epitope at the apex of the surface HIV envelope (Env) trimer. Using cryo‐electron microscopy, we solved the atomic structure of an apex bnAb, PGT145, in complex with Env. We showed that the long anionic HCDR3 of PGT145 penetrated between glycans at the trimer 3‐fold axis, to contact peptide residues from all three Env protomers, and thus explains its highly trimer‐specific nature. Somatic hypermutation in the other CDRs of PGT145 were crucially involved in stabilizing the structure of the HCDR3, similar to bovine antibodies, to aid in recognition of a cluster of conserved basic residues hypothesized to facilitate trimer disassembly during viral entry. Overall, the findings exemplify the creative solutions that the human immune system can evolve to recognize a conserved motif buried under a canopy of glycans. HighlightsApex binding antibody PGT145 engages all three gp120 protomers simultaneouslyEpitope recognition is chemical‐feature specificPGT145‐class antibodies exhibit structural features that reflect bovine antibodiesPGT145‐class antibody maturation is dependent on structural stabilization of HCDR3 &NA; Broadly neutralizing antibodies of the PGT145‐family target the HIV‐1 Env trimer apex via a long &bgr;‐hairpin HCDR3, but the molecular basis of recognition is unknown. Using cryoEM, Lee et al. (2017) reveal how PGT145 binds its quaternary epitope and the importance of HCDR2 evolution despite its lack of contacts with Env.
Science | 2014
Rajesh K. Grover; Xueyong Zhu; Travis Nieusma; Teresa M. Jones; Isabel Boero; Amanda S. MacLeod; Adam Mark; Sherry Niessen; Helen J. Kim; Leopold Kong; Nacyra Assad-Garcia; Keehwan Kwon; Marta Chesi; Vaughn V. Smider; Daniel R. Salomon; Diane F. Jelinek; Robert A. Kyle; Richard B. Pyles; John I. Glass; Andrew B. Ward; Ian A. Wilson; Richard A. Lerner
Easy M Our immune systems can produce a vastly diverse repertoire of antibody molecules that each recognize and bind to a specific foreign antigen via a hypervariable region. However, there are a few bacterial antigens—such as Protein A, Protein G, and Protein L—that instead bind to the antibodys conserved regions and can bind to a large number of different antibodies. These high-affinity broad-spectrum antibody-binding properties have been widely exploited both in the laboratory and in industry for purifying, immobilizing, and detecting antibodies. Grover et al. (p. 656) have now identified Protein M found on the surface of human mycoplasma, which displays even broader antibody-binding specificity. The crystal structure of Protein M revealed how Protein-M binding blocks the antibodys antigen binding site. This mechanism may be exploited by mycoplasma to escape the humoral immune response. High-affinity binding of Protein M to a very broad range of human antibodies may find widespread immunochemical applications. We report the discovery of a broadly reactive antibody-binding protein (Protein M) from human mycoplasma. The crystal structure of the ectodomain of transmembrane Protein M differs from other known protein structures, as does its mechanism of antibody binding. Protein M binds with high affinity to all types of human and nonhuman immunoglobulin G, predominantly through attachment to the conserved portions of the variable region of the κ and λ light chains. Protein M blocks antibody-antigen union, likely because of its large C-terminal domain extending over the antibody-combining site, blocking entry to large antigens. Similar to the other immunoglobulin-binding proteins such as Protein A, Protein M as well as its orthologs in other Mycoplasma species could become invaluable reagents in the antibody field.
Journal of Virology | 2014
Tinashe B. Ruwona; Erick Giang; Travis Nieusma; Mansun Law
ABSTRACT The hepatitis C virus (HCV) envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Previous immunization studies of E1E2 have yielded various results on its ability to induce virus-neutralizing antibodies in animal models and humans. The murine model has become a vital tool for HCV research owing to the development of humanized mice susceptible to HCV infection. In this study, we investigated the antibody responses of mice immunized with E1E2 and a novel soluble form of E1E2 (sE1E2) by a DNA prime and protein boost strategy. The results showed that sE1E2 elicited higher antibody titers and a greater breadth of reactivity than the wild-type cell-associated E1E2. However, immune sera elicited by either immunogen were only weakly neutralizing. In order to understand the contrasting results of binding and serum neutralizing activities, epitopes targeted by the polyclonal antibody responses were mapped and monoclonal antibodies (MAbs) were generated. The results showed that the majority of serum antibodies were directed to the E1 region 211 to 250 and the E2 regions 421 to 469, 512 to 539, 568 to 609, and 638 to 651, instead of the well-known immunodominant E2 hypervariable region 1 (HVR1). Unexpectedly, in MAb analysis, ∼12% of MAbs isolated were specific to the conserved E2 antigenic site 412 to 423, and 85% of them cross-neutralized multiple HCV isolates. The epitopes recognized by these MAbs are similar but distinct from the previously reported HCV1 and AP33 broadly neutralizing epitopes. In conclusion, E1E2 can prime B cells specific to conserved neutralizing epitopes, but the levels of serum neutralizing antibodies elicited are insufficient for effective virus neutralization. The sE1E2 constructs described in this study can be a useful template for rational antigen engineering. IMPORTANCE Hepatitis C virus infects 2 to 3% of the worlds population and is a leading cause of liver failures and the need for liver transplantation. The virus envelope glycoprotein complex E1E2 produced by detergent extraction of cells overexpressing the protein was evaluated in a phase I clinical trial but failed to induce neutralizing antibodies in most subjects. In this study, we designed a novel form of E1E2 which is secreted from cells and is soluble and compared it to wild-type E1E2 by DNA immunization of mice. The results showed that this new E1E2 is more immunogenic than wild-type E1E2. Detailed mapping of the antibody responses revealed that antibodies to the conserved E2 antigenic site 412 to 423 were elicited but the serum concentrations were too low to neutralize the virus effectively. This soluble E1E2 provides a new reagent for studying HCV and for rational vaccine design.
PLOS Pathogens | 2016
Merika Treants Koday; Jorgen Nelson; Aaron Chevalier; Michael Koday; Hannah Kalinoski; Lance J. Stewart; Lauren Carter; Travis Nieusma; Peter S. Lee; Andrew B. Ward; Ian A. Wilson; Ashley Dagley; Donald F. Smee; David Baker; Deborah H. Fuller
Broadly neutralizing antibodies targeting a highly conserved region in the hemagglutinin (HA) stem protect against influenza infection. Here, we investigate the protective efficacy of a protein (HB36.6) computationally designed to bind with high affinity to the same region in the HA stem. We show that intranasal delivery of HB36.6 affords protection in mice lethally challenged with diverse strains of influenza independent of Fc-mediated effector functions or a host antiviral immune response. This designed protein prevents infection when given as a single dose of 6.0 mg/kg up to 48 hours before viral challenge and significantly reduces disease when administered as a daily therapeutic after challenge. A single dose of 10.0 mg/kg HB36.6 administered 1-day post-challenge resulted in substantially better protection than 10 doses of oseltamivir administered twice daily for 5 days. Thus, binding of HB36.6 to the influenza HA stem region alone, independent of a host response, is sufficient to reduce viral infection and replication in vivo. These studies demonstrate the potential of computationally designed binding proteins as a new class of antivirals for influenza.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Leopold Kong; David E. Lee; Rameshwar U. Kadam; Tong Liu; Erick Giang; Travis Nieusma; Fernando Garces; Netanel Tzarum; Virgil L. Woods; Andrew B. Ward; Sheng Li; Ian A. Wilson; Mansun Law
Significance Hepatitis C virus is an important human pathogen, and its E2 envelope glycoprotein is the major target of neutralizing antibodies (NAbs) and, hence, a promising vaccine candidate. Many broadly NAbs (bNAbs) to E2 recognize the conserved receptor-binding site, but immunization with soluble E2 antigen rarely elicits a potent bNAb response. Here, we show that soluble E2 is highly stable except for the receptor-binding site and variable loops. Thus, despite high sequence conservation, structural flexibility at the receptor-binding site may distract the immune system from eliciting bNAbs that recognize the conformation required for its function on virions. Stabilization of the E2 CD81 receptor-binding site (CD81bs) by structure-based design may improve its performance as a vaccine candidate. Hepatitis C virus (HCV) is a major cause of liver disease, affecting over 2% of the world’s population. The HCV envelope glycoproteins E1 and E2 mediate viral entry, with E2 being the main target of neutralizing antibody responses. Structural investigations of E2 have produced templates for vaccine design, including the conserved CD81 receptor-binding site (CD81bs) that is a key target of broadly neutralizing antibodies (bNAbs). Unfortunately, immunization with recombinant E2 and E1E2 rarely elicits sufficient levels of bNAbs for protection. To understand the challenges for eliciting bNAb responses against the CD81bs, we investigated the E2 CD81bs by electron microscopy (EM), hydrogen–deuterium exchange (HDX), molecular dynamics (MD), and calorimetry. By EM, we observed that HCV1, a bNAb recognizing the N-terminal region of the CD81bs, bound a soluble E2 core construct from multiple angles of approach, suggesting components of the CD81bs are flexible. HDX of multiple E2 constructs consistently indicated the entire CD81bs was flexible relative to the rest of the E2 protein, which was further confirmed by MD simulations. However, E2 has a high melting temperature of 84.8 °C, which is more akin to proteins from thermophilic organisms. Thus, recombinant E2 is a highly stable protein overall, but with an exceptionally flexible CD81bs. Such flexibility may promote induction of nonneutralizing antibodies over bNAbs to E2 CD81bs, underscoring the necessity of rigidifying this antigenic region as a target for rational vaccine design.
Nature Biotechnology | 2017
Eva-Maria Strauch; Steffen M. Bernard; David La; Alan J Bohn; Peter S. Lee; Caitlin E. Anderson; Travis Nieusma; Carly A. Holstein; Natalie K. Garcia; Kathryn A. Hooper; Rashmi Ravichandran; Jorgen Nelson; William Sheffler; Jesse D. Bloom; Kelly K. Lee; Andrew B. Ward; Paul Yager; Deborah H. Fuller; Ian A. Wilson; David Baker
Many viral surface glycoproteins and cell surface receptors are homo-oligomers, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.