Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trinayan Kashyap is active.

Publication


Featured researches published by Trinayan Kashyap.


Blood | 2017

A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia

Ramiro Garzon; Michael R. Savona; Rachid Baz; Michael Andreeff; Nashat Gabrail; Martin Gutierrez; Lynn Savoie; Paul Morten Mau-Sorensen; Nina D. Wagner-Johnston; Karen Yee; Thaddeus J. Unger; Jean Richard Saint-Martin; Robert W. Carlson; Tami Rashal; Trinayan Kashyap; Boris Klebanov; Sharon Shacham; Michael Kauffman; Richard Stone

Selinexor is a novel, first-in-class, selective inhibitor of nuclear export compound, which blocks exportin 1 (XPO1) function, leads to nuclear accumulation of tumor suppressor proteins, and induces cancer cell death. A phase 1 dose-escalation study was initiated to examine the safety and efficacy of selinexor in patients with advanced hematological malignancies. Ninety-five patients with relapsed or refractory acute myeloid leukemia (AML) were enrolled between January 2013 and June 2014 to receive 4, 8, or 10 doses of selinexor in a 21- or 28-day cycle. The most frequently reported adverse events (AEs) in patients with AML were grade 1 or 2 constitutional and gastrointestinal toxicities, which were generally manageable with supportive care. The only nonhematological grade 3/4 AE, occurring in >5% of the patient population, was fatigue (14%). There were no reported dose-limiting toxicities or evidence of cumulative toxicity. The recommended phase 2 dose was established at 60 mg (∼35 mg/m2) given twice weekly in a 4-week cycle based on the totality of safety and efficacy data. Overall, 14% of the 81 evaluable patients achieved an objective response (OR) and 31% percent showed ≥50% decrease in bone marrow blasts from baseline. Patients achieving an OR had a significant improvement in median progression-free survival (PFS) (5.1 vs 1.3 months; P = .008; hazard ratio [HR], 3.1) and overall survival (9.7 vs 2.7 months; P = .01; HR, 3.1) compared with nonresponders. These findings suggest that selinexor is safe as a monotherapy in patients with relapsed or refractory AML and have informed subsequent phase 2 clinical development. This trial was registered at www.clinicaltrials.gov as #NCT01607892.


PLOS ONE | 2014

Novel Small Molecule XPO1/CRM1 Inhibitors Induce Nuclear Accumulation of TP53, Phosphorylated MAPK and Apoptosis in Human Melanoma Cells

Jennifer Yang; Matthew A. Bill; Gregory S. Young; Krista La Perle; Yosef Landesman; Sharon Shacham; Michael Kauffman; William Senapedis; Trinayan Kashyap; Jean-Richard Saint-Martin; Kari Kendra; Gregory B. Lesinski

XPO1/CRM1 is a key nuclear exporter protein that mediates translocation of numerous cellular regulatory proteins. We investigated whether XPO1 is a potential therapeutic target in melanoma using novel selective inhibitors of nuclear export (SINE). In vitro effects of SINE on cell growth and apoptosis were measured by MTS assay and flow cytometry [Annexin V/propidium iodide (PI)], respectively in human metastatic melanoma cell lines. Immunoblot analysis was used to measure nuclear localization of key cellular proteins. The in vivo activity of oral SINE was evaluated in NOD/SCID mice bearing A375 or CHL-1 human melanoma xenografts. SINE compounds induced cytostatic and pro-apoptotic effects in both BRAF wild type and mutant (V600E) cell lines at nanomolar concentrations. The cytostatic and pro-apoptotic effects of XPO1 inhibition were associated with nuclear accumulation of TP53, and CDKN1A induction in the A375 cell line with wild type TP53, while pMAPK accumulated in the nucleus regardless of TP53 status. The orally bioavailable KPT-276 and KPT-330 compounds significantly inhibited growth of A375 (p<0.0001) and CHL-1 (p = 0.0087) human melanoma cell lines in vivo at well tolerated doses. Inhibition of XPO1 using SINE represents a potential therapeutic approach for melanoma across cells with diverse molecular phenotypes by promoting growth inhibition and apoptosis.


Molecular Cancer Therapeutics | 2015

Selective Nuclear Export Inhibitor KPT-330 Enhances the Antitumor Activity of Gemcitabine in Human Pancreatic Cancer

Sabiha Kazim; Mokenge P. Malafa; Domenico Coppola; Kazim Husain; Sherma Zibadi; Trinayan Kashyap; Marsha Crochiere; Yosef Landesman; Tami Rashal; Daniel M. Sullivan; Amit Mahipal

Pancreatic cancer is an aggressive and deadly malignancy responsible for the death of over 37,000 Americans each year. Gemcitabine-based therapy is the standard treatment for pancreatic cancer but has limited efficacy due to chemoresistance. In this study, we evaluated the in vitro and in vivo effects of gemcitabine combined with the selective nuclear export (CRM1) inhibitor KPT-330 on pancreatic cancer growth. Human pancreatic cancer MiaPaCa-2 and metastatic pancreatic cancer L3.6pl cell lines were treated with different concentrations of KPT-330 and gemcitabine alone or in combination, and anchorage–dependent/independent growth was recorded. In addition, L3.6pl cells with luciferase were injected orthotopically into the pancreas of athymic nude mice, which were treated with (i) vehicle (PBS 1 mL/kg i.p., 2/week and povidone/pluronic F68 1 mL/kg p.o., 3/week), (ii) KPT-330 (20 mg/kg p.o., 3/week), (iii) gemcitabine (100 mg/kg i.p., 2/week), or (iv) KPT-330 (10 mg/kg) + gemcitabine (50 mg/kg) for 4 weeks. KPT-330 and gemcitabine alone dose-dependently inhibited anchorage-dependent growth in vitro and tumor volume in vivo compared with vehicle treatment. However, the combination inhibited growth synergistically. In combination, KPT-330 and gemcitabine acted synergistically to enhance pancreatic cancer cell death greater than each single-agent therapy. Mechanistically, KPT-330 and gemcitabine promoted apoptosis, induced p27, depleted survivin, and inhibited accumulation of DNA repair proteins. Together, our data suggest that KPT-330 potentiates the antitumor activity of gemcitabine in human pancreatic cancer through inhibition of tumor growth, depletion of the antiapoptotic proteins, and induction of apoptosis. Mol Cancer Ther; 14(7); 1570–81. ©2015 AACR.


Clinical Cancer Research | 2016

XPO1 Inhibition using Selinexor Synergizes with Chemotherapy in Acute Myeloid Leukemia by Targeting DNA Repair and Restoring Topoisomerase IIα to the Nucleus.

Parvathi Ranganathan; Trinayan Kashyap; Xueyan Yu; Xiaomei Meng; Tzung-Huei Lai; Betina McNeil; Bhavana Bhatnagar; Sharon Shacham; Michael Kauffman; Adrienne M. Dorrance; William Blum; Deepa Sampath; Yosef Landesman; Ramiro Garzon

Purpose: Selinexor, a selective inhibitor of XPO1, is currently being tested as single agent in clinical trials in acute myeloid leukemia (AML). However, considering the molecular complexity of AML, it is unlikely that AML can be cured with monotherapy. Therefore, we asked whether adding already established effective drugs such as topoisomerase (Topo) II inhibitors to selinexor will enhance its anti-leukemic effects in AML. Experimental Design: The efficacy of combinatorial drug treatment using Topo II inhibitors (idarubicin, daunorubicin, mitoxantrone, etoposide) and selinexor was evaluated in established cellular and animal models of AML. Results: Concomitant treatment with selinexor and Topo II inhibitors resulted in therapeutic synergy in AML cell lines and patient samples. Using a xenograft MV4-11 AML mouse model, we show that treatment with selinexor and idarubicin significantly prolongs survival of leukemic mice compared with each single therapy. Conclusions: Aberrant nuclear export and cytoplasmic localization of Topo IIα has been identified as one of the mechanisms leading to drug resistance in cancer. Here, we show that in a subset of patients with AML that express cytoplasmic Topo IIα, selinexor treatment results in nuclear retention of Topo IIα protein, resulting in increased sensitivity to idarubicin. Selinexor treatment of AML cells resulted in a c-MYC–dependent reduction of DNA damage repair genes (Rad51 and Chk1) mRNA and protein expression and subsequent inhibition of homologous recombination repair and increased sensitivity to Topo II inhibitors. The preclinical data reported here support further clinical studies using selinexor and Topo II inhibitors in combination to treat AML. Clin Cancer Res; 22(24); 6142–52. ©2016 AACR.


Oncotarget | 2016

Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death

Trinayan Kashyap; Christian Argueta; Amro Aboukameel; Thaddeus J. Unger; Boris Klebanov; Ramzi M. Mohammad; Irfana Muqbil; Asfar S. Azmi; Claire Drolen; William Senapedis; Margaret Lee; Michael Kauffman; Sharon Shacham; Yosef Landesman

The nuclear export protein, exportin-1 (XPO1/CRM1), is overexpressed in many cancers and correlates with poor prognosis. Selinexor, a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound, binds covalently to XPO1 and blocks its function. Treatment of cancer cells with selinexor results in nuclear retention of major tumor suppressor proteins and cell cycle regulators, leading to growth arrest and apoptosis. Recently, we described the selection of SINE compound resistant cells and reported elevated expression of inflammation-related genes in these cells. Here, we demonstrated that NF-κB transcriptional activity is up-regulated in cells that are naturally resistant or have acquired resistance to SINE compounds. Resistance to SINE compounds was created by knockdown of the cellular NF-κB inhibitor, IκB-α. Combination treatment of selinexor with proteasome inhibitors decreased NF-κB activity, sensitized SINE compound resistant cells and showed synergistic cytotoxicity in vitro and in vivo. Furthermore, we showed that selinexor inhibited NF-κB activity by blocking phosphorylation of the IκB-α and the NF-κB p65 subunits, protecting IκB-α from proteasome degradation and trapping IκB-α in the nucleus to suppress NF-κB activity. Therefore, combination treatment of selinexor with a proteasome inhibitor may be beneficial to patients with resistance to either single-agent.


Oncotarget | 2016

XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma

Joel G. Turner; Trinayan Kashyap; Jana L. Dawson; Juan A Gomez; Alexis Bauer; Steven Grant; Yun Dai; Kenneth H. Shain; Mark B. Meads; Yosef Landesman; Daniel M. Sullivan

Acquired proteasome-inhibitor (PI) resistance is a major obstacle in the treatment of multiple myeloma (MM). We investigated whether the clinical XPO1-inhibitor selinexor, when combined with bortezomib or carfilzomib, could overcome acquired resistance in MM. PI-resistant myeloma cell lines both in vitro and in vivo and refractory myeloma patient biopsies were treated with selinexor/bortezomib or carfilzomib and assayed for apoptosis. Mechanistic studies included NFκB pathway protein expression assays, immunofluorescence microscopy, ImageStream flow-cytometry, and proximity-ligation assays. IκBα knockdown and NFκB activity were measured in selinexor/bortezomib-treated MM cells. We found that selinexor restored sensitivity of PI-resistant MM to bortezomib and carfilzomib. Selinexor/bortezomib treatment inhibited PI-resistant MM tumor growth and increased survival in mice. Myeloma cells from PI-refractory MM patients were sensitized by selinexor to bortezomib and carfilzomib without affecting non-myeloma cells. Immunofluorescence microscopy, Western blot, and ImageStream analyses of MM cells showed increases in total and nuclear IκBα by selinexor/bortezomib. Proximity ligation found increased IκBα-NFκB complexes in treated MM cells. IκBα knockdown abrogated selinexor/bortezomib-induced cytotoxicity in MM cells. Selinexor/bortezomib treatment decreased NFκB transcriptional activity. Selinexor, when used with bortezomib or carfilzomib, has the potential to overcome PI drug resistance in MM. Sensitization may be due to inactivation of the NFκB pathway by IκBα.


Blood | 2017

Selinexor-induced thrombocytopenia results from inhibition of thrombopoietin signaling in early megakaryopoiesis

Kellie R. Machlus; Stephen Wu; Prakrith Vijey; Thomas S. Soussou; Zhi-Jian Liu; Eran Shacham; Thaddeus J. Unger; Trinayan Kashyap; Boris Klebanov; Martha Sola-Visner; Marsha Crochiere; Joseph E. Italiano; Yosef Landesman

Selinexor is the first oral selective inhibitor of nuclear export compound tested for cancer treatment. Selinexor has demonstrated a safety therapy profile with broad antitumor activity against solid and hematological malignancies in phases 2 and 3 clinical trials (#NCT03071276, #NCT02343042, #NCT02227251, #NCT03110562, and #NCT02606461). Although selinexor shows promising efficacy, its primary adverse effect is high-grade thrombocytopenia. Therefore, we aimed to identify the mechanism of selinexor-induced thrombocytopenia to relieve it and improve its clinical management. We determined that selinexor causes thrombocytopenia by blocking thrombopoietin (TPO) signaling and therefore differentiation of stem cells into megakaryocytes. We then used both in vitro and in vivo models and patient samples to show that selinexor-induced thrombocytopenia is indeed reversible when TPO agonists are administered in the absence of selinexor (drug holiday). In sum, these data reveal (1) the mechanism of selinexor-induced thrombocytopenia, (2) an effective way to reverse the dose-limiting thrombocytopenia, and (3) a novel role for XPO1 in megakaryopoiesis. The improved selinexor dosing regimen described herein is crucial to help reduce thrombocytopenia in selinexor patients, allowing them to continue their course of chemotherapy and have the best chance of survival. This trial was registered at www.clinicaltrials.gov as #NCT01607905.


BMC Veterinary Research | 2014

Biologic activity of the novel orally bioavailable selective inhibitor of nuclear export (SINE) KPT-335 against canine melanoma cell lines

Megan N Breit; William C. Kisseberth; Misty D. Bear; Yosef Landesman; Trinayan Kashyap; Dilara McCauley; Michael Kauffman; Sharon Shacham; Cheryl A. London

BackgroundExportin 1 (XPO1, also known as CRM1), is a chaperone protein responsible for the export of over 200 target proteins out of the nucleus. The expression and activity of XPO1 is upregulated in several human cancers and its expression is also linked to the development of chemotherapy resistance. Recent studies using both human and murine cancer cell lines have demonstrated that XPO1 is a relevant target for therapeutic intervention. The present study sought to characterize the biologic activity of an orally bioavailable selective inhibitor of nuclear export (SINE), KPT-335, against canine melanoma cell lines as a prelude to future clinical trials in dogs with melanoma.ResultsWe evaluated the effects of KPT-335 on 4 canine malignant melanoma cell lines and found that KPT-335 inhibited proliferation, blocked colony formation, and induced apoptosis of treated cells at biologically relevant concentrations of drug. Additionally, KPT-335 downregulated XPO1 protein while inducing a concomitant increase in XPO1 messenger RNA. Lastly, KPT-335 treatment of cell lines upregulated the expression of both protein and mRNA for the tumor suppressor proteins p53 and p21, and promoted their nuclear localization.ConclusionsKPT-335 demonstrates biologic activity against canine melanoma cell lines at physiologically relevant doses, suggesting that KPT-335 may represent a viable treatment option for dogs with malignant melanoma.


Oncotarget | 2017

Selective Inhibitors of Nuclear Export (SINE) compounds block proliferation and migration of triple negative breast cancer cells by restoring expression of ARRDC3

Young Hwa Soung; Trinayan Kashyap; Thalia Nguyen; Garima Yadav; Hua Chang; Yosef Landesman; Jun Chung

Arrestin-related domain-containing protein-3 (ARRDC3) is one of 6 mammalian arrestins, which suppresses metastasis by inducing degradation of phosphorylated β2-adrenergic receptor (β2 AR) and integrin β4 (ITG β4). Our previous studies demonstrated that expression of ARRDC3 is epigentically silenced in Triple Negative Breast Cancer (TNBC) cells, and the forced expression of ARRDC3 significantly reduced the invasive potential of TNBC cells. In the current study, we found that Selective Inhibitors of Nuclear Export (SINE) compounds (KPT-185 and selinexor (KPT-330)) restore ARRDC3 expression in TNBC cell lines (MDA-MB-231 and MDA-MB-468) at both the mRNA and protein level in a dose and time course dependent manner. SINE compounds inhibit the proliferation, pro-invasive migration and anchorage independent growth of the TNBC cells by restoring ARRDC3 expression. We found that ARRDC3 expression is lower in TNBC cell lines than those of luminal breast cancer cell lines, and inversely correlated with IC50s of selinexor. Analysis of tissue microarray confirmed that ARRDC3 expression in patient samples is significantly lower in the majority of TNBC tumors relative to normal tissue. In vivo, selinexor inhibited the tumor growth of MDA-MB-231 xenografts by nearly 100% compared with vehicle treated animals. Furthermore, immunohistochemical analysis of TNBC tumors from selinexor treated mice revealed increased ARRDC3 expression versus vehicle treated animals. Our results suggest that restoration of ARRDC3 expression is an important antineoplastic mechanism of SINE compounds in TNBC, and therefore selinexor could be an effective treatment option for breast tumors with down-regulated ARRDC3.Arrestin-related domain-containing protein-3 (ARRDC3) is one of 6 mammalian arrestins, which suppresses metastasis by inducing degradation of phosphorylated β2-adrenergic receptor (β2 AR) and integrin β4 (ITG β4). Our previous studies demonstrated that expression of ARRDC3 is epigentically silenced in Triple Negative Breast Cancer (TNBC) cells, and the forced expression of ARRDC3 significantly reduced the invasive potential of TNBC cells. In the current study, we found that Selective Inhibitors of Nuclear Export (SINE) compounds (KPT-185 and selinexor (KPT-330)) restore ARRDC3 expression in TNBC cell lines (MDA-MB-231 and MDA-MB-468) at both the mRNA and protein level in a dose and time course dependent manner. SINE compounds inhibit the proliferation, pro-invasive migration and anchorage independent growth of the TNBC cells by restoring ARRDC3 expression. We found that ARRDC3 expression is lower in TNBC cell lines than those of luminal breast cancer cell lines, and inversely correlated with IC50s of selinexor. Analysis of tissue microarray confirmed that ARRDC3 expression in patient samples is significantly lower in the majority of TNBC tumors relative to normal tissue. In vivo, selinexor inhibited the tumor growth of MDA-MB-231 xenografts by nearly 100% compared with vehicle treated animals. Furthermore, immunohistochemical analysis of TNBC tumors from selinexor treated mice revealed increased ARRDC3 expression versus vehicle treated animals. Our results suggest that restoration of ARRDC3 expression is an important antineoplastic mechanism of SINE compounds in TNBC, and therefore selinexor could be an effective treatment option for breast tumors with down-regulated ARRDC3.


Molecular Cancer Therapeutics | 2017

The exportin-1 inhibitor selinexor exerts superior anti-tumor activity when combined with T cell checkpoint inhibitors.

Matthew R. Farren; Rebecca C. Hennessey; Reena Shakya; Omar Elnaggar; Gregory S. Young; Kari Kendra; Yosef Landesman; Sivan Elloul; Marsha Crochiere; Boris Klebanov; Trinayan Kashyap; Christin E. Burd; Gregory B. Lesinski

Selinexor, a selective inhibitor of nuclear export (SINE) compound targeting exportin-1, has previously been shown to inhibit melanoma cell growth in vivo. We hypothesized that combining selinexor with antibodies that block or disrupt T-cell checkpoint molecule signaling would exert superior antimelanoma activity. In vitro, selinexor increased PDCD1 and CTLA4 gene expression in leukocytes and induced CD274 gene expression in human melanoma cell lines. Mice bearing syngeneic B16F10 melanoma tumors demonstrated a significant reduction in tumor growth rate in response to the combination of selinexor and anti-PD-1 or anti-PD-L1 antibodies (P < 0.05). Similar results were obtained in B16F10-bearing mice treated with selinexor combined with anti-CTLA4 antibody. Immunophenotypic analysis of splenocytes by flow cytometry revealed that selinexor alone or in combination with anti-PD-L1 antibody significantly increased the frequency of both natural killer cells (P ≤ 0.050) and CD4+ T cells with a Th1 phenotype (P ≤ 0.050). Further experiments indicated that the antitumor effect of selinexor in combination with anti-PD-1 therapy persisted under an alternative dosing schedule but was lost when selinexor was administered daily. These data indicate that the efficacy of selinexor against melanoma may be enhanced by disrupting immune checkpoint activity. Mol Cancer Ther; 16(3); 417–27. ©2017 AACR. See related article by Tyler et al., p. 428.

Collaboration


Dive into the Trinayan Kashyap's collaboration.

Top Co-Authors

Avatar

Yosef Landesman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Senapedis

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael Kauffman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Boris Klebanov

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Erkan Baloglu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dilara McCauley

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon Shechter

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge