Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William Senapedis is active.

Publication


Featured researches published by William Senapedis.


Leukemia | 2014

CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications

Yu-Tzu Tai; Yosef Landesman; Chirag Acharya; Yolanda Calle; Mike Zhong; Michele Cea; Daniel Tannenbaum; Antonia Cagnetta; Michaela R. Reagan; Aditya Munshi; William Senapedis; J. R. Saint-Martin; T. Kashyap; Sharon Shacham; Michael Kauffman; Yumei Gu; Lizi Wu; Irene M. Ghobrial; Fenghuang Zhan; Andrew L. Kung; S. A. Schey; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

The key nuclear export protein CRM1/XPO1 may represent a promising novel therapeutic target in human multiple myeloma (MM). Here we showed that chromosome region maintenance 1 (CRM1) is highly expressed in patients with MM, plasma cell leukemia cells and increased in patient cells resistant to bortezomib treatment. CRM1 expression also correlates with increased lytic bone and shorter survival. Importantly, CRM1 knockdown inhibits MM cell viability. Novel, oral, irreversible selective inhibitors of nuclear export (SINEs) targeting CRM1 (KPT-185, KPT-330) induce cytotoxicity against MM cells (ED50<200 nM), alone and cocultured with bone marrow stromal cells (BMSCs) or osteoclasts (OC). SINEs trigger nuclear accumulation of multiple CRM1 cargo tumor suppressor proteins followed by growth arrest and apoptosis in MM cells. They further block c-myc, Mcl-1, and nuclear factor κB (NF-κB) activity. SINEs induce proteasome-dependent CRM1 protein degradation; concurrently, they upregulate CRM1, p53-targeted, apoptosis-related, anti-inflammatory and stress-related gene transcripts in MM cells. In SCID mice with diffuse human MM bone lesions, SINEs show strong anti-MM activity, inhibit MM-induced bone lysis and prolong survival. Moreover, SINEs directly impair osteoclastogenesis and bone resorption via blockade of RANKL-induced NF-κB and NFATc1, with minimal impact on osteoblasts and BMSCs. These results support clinical development of SINE CRM1 antagonists to improve patient outcome in MM.


Journal of Hematology & Oncology | 2014

Nucleo-cytoplasmic transport as a therapeutic target of cancer

Giovanni Luca Gravina; William Senapedis; Dilara McCauley; Erkan Baloglu; Sharon Shacham; Claudio Festuccia

Shuttling of specific proteins out of the nucleus is essential for the regulation of the cell cycle and proliferation of both normal and malignant tissues. Dysregulation of this fundamental process may affect many other important cellular processes such as tumor growth, inflammatory response, cell cycle, and apoptosis. It is known that XPO1 (Exportin-1/Chromosome Region Maintenance 1/CRM1) is the main mediator of nuclear export in many cell types. Nuclear proteins exported to the cytoplasm by XPO1 include the drug targets topoisomerase IIα (topo IIα) and BCR-ABL and tumor suppressor proteins such as Rb, APC, p53, p21, and p27. XPO1 can mediate cell proliferation through several pathways: (i) the sub-cellular localization of NES-containing oncogenes and tumor suppressor proteins, (ii) the control of the mitotic apparatus and chromosome segregation, and (iii) the maintenance of nuclear and chromosomal structures. The XPO1 protein is elevated in ovarian carcinoma, glioma, osteosarcoma, pancreatic and cervical cancer. There is a growing body of research indicating that XPO1 may have an important role as a prognostic marker in solid tumors. Because of this, nuclear export inhibition through XPO1 is a potential target for therapeutic intervention in many cancers. The best understood XPO1 inhibitors are the small molecule nuclear export inhibitors (NEIs; Leptomycin B and derivatives, ratjadones, PKF050-638, valtrate, ACA, CBS9106, selinexor/KPT-330, and verdinexor/KPT-335). Selinexor and verdinexor are orally bioavailable, highly potent, small molecules that are classified as Selective Inhibitors of Nuclear Export (SINE). KPT-330 is the only NEI currently in Phase I/II human clinical trials in hematological and solid cancers. Of all the potential targets in nuclear cytoplasmic transport, the nuclear export receptor XPO1 remains the best understood and most advanced therapeutic target for the treatment of cancer.


Nature | 2016

XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer

Jimi Kim; Elizabeth McMillan; Hyunseok Kim; Niranjan Venkateswaran; Gurbani Makkar; Jaime Rodriguez-Canales; Pamela Villalobos; Jasper Edgar Neggers; Saurabh Mendiratta; Shuguang Wei; Yosef Landesman; William Senapedis; Erkan Baloglu; Chi-Wan B. Chow; Robin E. Frink; Boning Gao; Michael G. Roth; John D. Minna; Dirk Daelemans; Ignacio I. Wistuba; Bruce A. Posner; Pier Paolo Scaglioni; Michael A. White

The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of KRAS-mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both in vitro and in vivo. The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent FSTL5 mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5–Hippo pathway regulatory axis. This occurs in approximately 17% of KRAS-mutant lung cancers, and can be overcome with the co-administration of a YAP1–TEAD inhibitor. These findings indicate that clinically available XPO1 inhibitors are a promising therapeutic strategy for a considerable cohort of patients with lung cancer when coupled to genomics-guided patient selection and observation.


Molecular Cancer Therapeutics | 2013

CRM1 and BRAF Inhibition Synergize and Induce Tumor Regression in BRAF-Mutant Melanoma

Roberto A. Salas Fragomeni; Hye Won Chung; Yosef Landesman; William Senapedis; Jean-Richard Saint-Martin; Hensin Tsao; Keith T. Flaherty; Sharon Shacham; Michael Kauffman; James C. Cusack

Resistance to BRAF inhibitor therapy places priority on developing BRAF inhibitor-based combinations that will overcome de novo resistance and prevent the emergence of acquired mechanisms of resistance. The CRM1 receptor mediates the nuclear export of critical proteins required for melanoma proliferation, survival, and drug resistance. We hypothesize that by inhibiting CRM1-mediated nuclear export, we will alter the function of these proteins resulting in decreased melanoma viability and enhanced BRAF inhibitor antitumoral effects. To test our hypothesis, selective inhibitors of nuclear export (SINE) analogs KPT-185, KPT-251, KPT-276, and KPT-330 were used to induce CRM1 inhibition. Analogs PLX-4720 and PLX-4032 were used as BRAF inhibitors. Compounds were tested in xenograft and in vitro melanoma models. In vitro, we found CRM1 inhibition decreases melanoma cell proliferation independent of BRAF mutation status and synergistically enhances the effects of BRAF inhibition on BRAF-mutant melanoma by promoting cell-cycle arrest and apoptosis. In melanoma xenograft models, CRM1 inhibition reduces tumor growth independent of BRAF or NRAS status and induces complete regression of BRAF V600E tumors when combined with BRAF inhibition. Mechanistic studies show that CRM1 inhibition was associated with p53 stabilization and retinoblastoma protein (pRb) and survivin modulation. Furthermore, we found that BRAF inhibition abrogates extracellular signal–regulated kinase phosphorylation associated with CRM1 inhibition, which may contribute to the synergy of the combination. In conclusion, CRM1 inhibition impairs melanoma survival in both BRAF-mutant and wild-type melanoma. The combination of CRM1 and BRAF inhibition synergizes and induces melanoma regression in BRAF-mutant melanoma. Mol Cancer Ther; 12(7); 1171–9. ©2013 AACR.


Gut | 2017

Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma

Yan Yi Jiang; De-Chen Lin; Anand Mayakonda; Masaharu Hazawa; Ling Wen Ding; Wen Wen Chien; Liang Xu; Ye Chen; Jin Fen Xiao; William Senapedis; Erkan Baloglu; Deepika Kanojia; Li Shang; Xin Xu; Henry Yang; Jeffrey W. Tyner; Ming Rong Wang; H. Phillip Koeffler

Objectives Oesophageal squamous cell carcinoma (OSCC) is an aggressive malignancy and the major histological subtype of oesophageal cancer. Although recent large-scale genomic analysis has improved the description of the genetic abnormalities of OSCC, few targetable genomic lesions have been identified, and no molecular therapy is available. This study aims to identify druggable candidates in this tumour. Design High-throughput small-molecule inhibitor screening was performed to identify potent anti-OSCC compounds. Whole-transcriptome sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) were conducted to decipher the mechanisms of action of CDK7 inhibition in OSCC. A variety of in vitro and in vivo cellular assays were performed to determine the effects of candidate genes on OSCC malignant phenotypes. Results The unbiased high-throughput small-molecule inhibitor screening led us to discover a highly potent anti-OSCC compound, THZ1, a specific CDK7 inhibitor. RNA-Seq revealed that low-dose THZ1 treatment caused selective inhibition of a number of oncogenic transcripts. Notably, further characterisation of the genomic features of these THZ1-sensitive transcripts demonstrated that they were frequently associated with super-enhancer (SE). Moreover, SE analysis alone uncovered many OSCC lineage-specific master regulators. Finally, integrative analysis of both THZ1-sensitive and SE-associated transcripts identified a number of novel OSCC oncogenes, including PAK4, RUNX1, DNAJB1, SREBF2 and YAP1, with PAK4 being a potential druggable kinase. Conclusions Our integrative approaches led to a catalogue of SE-associated master regulators and oncogenic transcripts, which may significantly promote both the understanding of OSCC biology and the development of more innovative therapies.


Molecular Cancer Therapeutics | 2016

Dual and specific inhibition of NAMPT and PAK4 by KPT-9274 decreases kidney cancer growth

Omran Abu Aboud; Ching-Hsien Chen; William Senapedis; Erkan Baloglu; Christian Argueta; Robert H. Weiss

Kidney cancer (or renal cell carcinoma, RCC) is the sixth most common malignancy in the United States and one of the relatively few whose incidence is increasing. Because of the near universal resistance which occurs with the use of current treatment regimens, reprogrammed metabolic pathways are being investigated as potential targets for novel therapies of this disease. Borrowing from studies on other malignancies, we have identified the PAK4 and NAD biosynthetic pathways as being essential for RCC growth. We now show, using the dual PAK4/NAMPT inhibitor KPT-9274, that interference with these signaling pathways results in reduction of G2–M transit as well as induction of apoptosis and decrease in cell invasion and migration in several human RCC cell lines. Mechanistic studies demonstrate that inhibition of the PAK4 pathway by KPT-9274 attenuates nuclear β-catenin as well as the Wnt/β-catenin targets cyclin D1 and c-Myc. Furthermore, NAPRT1 downregulation, which we show occurs in all RCC cell lines tested, makes this tumor highly dependent on NAMPT for its NAD requirements, such that inhibition of NAMPT by KPT-9274 leads to decreased survival of these rapidly proliferating cells. When KPT-9274 was administered in vivo to a 786-O (VHL-mut) human RCC xenograft model, there was dose-dependent inhibition of tumor growth with no apparent toxicity; KPT-9274 demonstrated the expected on-target effects in this mouse model. KPT-9274 is being evaluated in a phase I human clinical trial in solid tumors and lymphomas, which will allow this data to be rapidly translated into the clinic for the treatment of RCC. Mol Cancer Ther; 15(9); 2119–29. ©2016 AACR.


PLOS ONE | 2014

Novel Small Molecule XPO1/CRM1 Inhibitors Induce Nuclear Accumulation of TP53, Phosphorylated MAPK and Apoptosis in Human Melanoma Cells

Jennifer Yang; Matthew A. Bill; Gregory S. Young; Krista La Perle; Yosef Landesman; Sharon Shacham; Michael Kauffman; William Senapedis; Trinayan Kashyap; Jean-Richard Saint-Martin; Kari Kendra; Gregory B. Lesinski

XPO1/CRM1 is a key nuclear exporter protein that mediates translocation of numerous cellular regulatory proteins. We investigated whether XPO1 is a potential therapeutic target in melanoma using novel selective inhibitors of nuclear export (SINE). In vitro effects of SINE on cell growth and apoptosis were measured by MTS assay and flow cytometry [Annexin V/propidium iodide (PI)], respectively in human metastatic melanoma cell lines. Immunoblot analysis was used to measure nuclear localization of key cellular proteins. The in vivo activity of oral SINE was evaluated in NOD/SCID mice bearing A375 or CHL-1 human melanoma xenografts. SINE compounds induced cytostatic and pro-apoptotic effects in both BRAF wild type and mutant (V600E) cell lines at nanomolar concentrations. The cytostatic and pro-apoptotic effects of XPO1 inhibition were associated with nuclear accumulation of TP53, and CDKN1A induction in the A375 cell line with wild type TP53, while pMAPK accumulated in the nucleus regardless of TP53 status. The orally bioavailable KPT-276 and KPT-330 compounds significantly inhibited growth of A375 (p<0.0001) and CHL-1 (p = 0.0087) human melanoma cell lines in vivo at well tolerated doses. Inhibition of XPO1 using SINE represents a potential therapeutic approach for melanoma across cells with diverse molecular phenotypes by promoting growth inhibition and apoptosis.


Molecular Cancer Therapeutics | 2017

Novel p21-activated kinase 4 (PAK4) allosteric modulators overcome drug resistance and stemness in pancreatic ductal adenocarcinoma

Amro Aboukameel; Irfana Muqbil; William Senapedis; Erkan Baloglu; Yosef Landesman; Sharon Shacham; Michael Kauffman; Philip A. Philip; Ramzi M. Mohammad; Asfar S. Azmi

The p21-activated kinase 4 (PAK4) is a key downstream effector of the Rho family GTPases and is found to be overexpressed in pancreatic ductal adenocarcinoma (PDAC) cells but not in normal human pancreatic ductal epithelia (HPDE). Gene copy number amplification studies in PDAC patient cohorts confirmed PAK4 amplification making it an attractive therapeutic target in PDAC. We investigated the antitumor activity of novel PAK4 allosteric modulators (PAM) on a panel of PDAC cell lines and chemotherapy-resistant flow-sorted PDAC cancer stem cells (CSC). The toxicity and efficacy of PAMs were evaluated in multiple subcutaneous mouse models of PDAC. PAMs (KPT-7523, KPT-7189, KPT-8752, KPT-9307, and KPT-9274) show antiproliferative activity in vitro against different PDAC cell lines while sparing normal HPDE. Cell growth inhibition was concurrent with apoptosis induction and suppression of colony formation in PDAC. PAMs inhibited proliferation and antiapoptotic signals downstream of PAK4. Co-immunoprecipitation experiments showed disruption of PAK4 complexes containing vimentin. PAMs disrupted CSC spheroid formation through suppression of PAK4. Moreover, PAMs synergize with gemcitabine and oxaliplatin in vitro. KPT-9274, currently in a phase I clinical trial (clinicaltrials.gov; NCT02702492), possesses desirable pharmacokinetic properties and is well tolerated in mice with the absence of any signs of toxicity when 200 mg/kg daily is administered either intravenously or orally. KPT-9274 as a single agent showed remarkable antitumor activity in subcutaneous xenograft models of PDAC cell lines and CSCs. These proof-of-concept studies demonstrated the antiproliferative effects of novel PAMs in PDAC and warrant further clinical investigations. Mol Cancer Ther; 16(1); 76–87. ©2016 AACR.


Scientific Reports | 2015

Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition.

Asfar S. Azmi; Irfana Muqbil; Jack Wu; Amro Aboukameel; William Senapedis; Erkan Baloglu; Aliccia Bollig-Fischer; Gregory Dyson; Michael Kauffman; Yosef Landesman; Sharon Shacham; Philip A. Philip; Ramzi M. Mohammad

Here we demonstrate for the first time that targeted inhibition of nuclear exporter protein exportin 1 (XPO1) also known as chromosome maintenance region 1 (CRM1) by Selective Inhibitor of Nuclear Export (SINE) compounds results in reversal of EMT in snail-transduced primary human mammary epithelial cells (HMECs). SINE compounds selinexor (KPT-330) and KPT-185, leptomycin B (LMB as +ve control) but not KPT-301 (–ve control) reverse EMT, suppress mesenchymal markers and consequently induce growth inhibition, apoptosis and prevent spheroid formation. SINE treatment resulted in nuclear retention of snail regulator FBXL5 that was concurrent with suppression of snail and down-regulation of mesenchymal markers. FBXL5 siRNA or transfection with cys528 mut-Xpo1 (lacking SINE binding site) markedly abrogated SINE activity highlighting an XPO1 and FBXL5 mediated mechanism of action. Silencing XPO1 or snail caused re-expression of FBXL5 as well as EMT reversal. Pathway analysis on SINE treated HMECs further verified the involvement of additional F-Box family proteins and confirmed the suppression of snail network. Oral administration of selinexor (15 mg/kg p.o. QoDx3/week for 3weeks) resulted in complete cures (no tumor rebound at 120 days) of HMLER-Snail xenografts. These findings raise the unique possibility of blocking EMT at the nuclear pore.


Blood | 2017

Functional role and therapeutic targeting of p21-associated kinase 4 (PAK4) in multiple myeloma

Mariateresa Fulciniti; Joaquin Martinez-Lopez; William Senapedis; Stefania Oliva; Rajya Lakshmi Bandi; Nicola Amodio; Yan Xu; Raphael L. Szalat; Annamaria Gullà; Mehmet Kemal Samur; Aldo M. Roccaro; María Linares; Michele Cea; Erkan Baloglu; Christian Argueta; Yosef Landesman; Sharon Shacham; Siyuan Liu; Monica Schenone; Shiaw-Lin Wu; Barry L. Karger; Rao Prabhala; Kenneth C. Anderson; Nikhil C. Munshi

Dysregulated oncogenic serine/threonine kinases play a pathological role in diverse forms of malignancies, including multiple myeloma (MM), and thus represent potential therapeutic targets. Here, we evaluated the biological and functional role of p21-activated kinase 4 (PAK4) and its potential as a new target in MM for clinical applications. PAK4 promoted MM cell growth and survival via activation of MM survival signaling pathways, including the MEK-extracellular signal-regulated kinase pathway. Furthermore, treatment with orally bioavailable PAK4 allosteric modulator (KPT-9274) significantly impacted MM cell growth and survival in a large panel of MM cell lines and primary MM cells alone and in the presence of bone marrow microenvironment. Intriguingly, we have identified FGFR3 as a novel binding partner of PAK4 and observed significant activity of KPT-9274 against t(4;14)-positive MM cells. This set of data supports PAK4 as an oncogene in myeloma and provide the rationale for the clinical evaluation of PAK4 modulator in myeloma.

Collaboration


Dive into the William Senapedis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erkan Baloglu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trinayan Kashyap

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dilara McCauley

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Boris Klebanov

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon Shechter

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge