Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Jaschob is active.

Publication


Featured researches published by Daniel Jaschob.


Nature Cell Biology | 2012

Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress

Johnny M. Tkach; Askar Yimit; Anna Y. Lee; Michael Riffle; Michael Costanzo; Daniel Jaschob; Jason A. Hendry; Jiongwen Ou; Jason Moffat; Charles Boone; Trisha N. Davis; Corey Nislow; Grant W. Brown

Relocalization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein reorganization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by subcellular destination enables the identification of pathways that respond to replication stress. We analysed pairwise combinations of GFP fusions and gene deletion mutants to define and order two previously unknown DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways.


Genome Research | 2013

Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast

Daniel A. Skelly; Gennifer Merrihew; Michael Riffle; Caitlin F. Connelly; Emily O. Kerr; Marnie Johansson; Daniel Jaschob; Beth Graczyk; Nicholas J. Shulman; Jon Wakefield; Sara J. Cooper; Stanley Fields; William Stafford Noble; Eric G D Muller; Trisha N. Davis; Maitreya J. Dunham; Michael J. MacCoss; Joshua M. Akey

To better understand the quantitative characteristics and structure of phenotypic diversity, we measured over 14,000 transcript, protein, metabolite, and morphological traits in 22 genetically diverse strains of Saccharomyces cerevisiae. More than 50% of all measured traits varied significantly across strains [false discovery rate (FDR) = 5%]. The structure of phenotypic correlations is complex, with 85% of all traits significantly correlated with at least one other phenotype (median = 6, maximum = 328). We show how high-dimensional molecular phenomics data sets can be leveraged to accurately predict phenotypic variation between strains, often with greater precision than afforded by DNA sequence information alone. These results provide new insights into the spectrum and structure of phenotypic diversity and the characteristics influencing the ability to accurately predict phenotypes.


Nature Communications | 2015

The molecular architecture of the Dam1 kinetochore complex is defined by cross-linking based structural modelling

Alex Zelter; Massimiliano Bonomi; Jae ook Kim; Neil T. Umbreit; Michael R. Hoopmann; Richard J. Johnson; Michael Riffle; Daniel Jaschob; Michael J. MacCoss; Robert L. Moritz; Trisha N. Davis

Accurate segregation of chromosomes during cell division is essential. The Dam1 complex binds kinetochores to microtubules and its oligomerization is required to form strong attachments. It is a key target of Aurora B kinase, which destabilizes erroneous attachments allowing subsequent correction. Understanding the roles and regulation of the Dam1 complex requires structural information. Here we apply cross-linking/mass spectrometry and structural modelling to determine the molecular architecture of the Dam1 complex. We find microtubule attachment is accompanied by substantial conformational changes, with direct binding mediated by the carboxy termini of Dam1p and Duo1p. Aurora B phosphorylation of Dam1p C terminus weakens direct interaction with the microtubule. Furthermore, the Dam1p amino terminus forms an interaction interface between Dam1 complexes, which is also disrupted by phosphorylation. Our results demonstrate that Aurora B inhibits both direct interaction with the microtubule and oligomerization of the Dam1 complex to drive error correction during mitosis.


Molecular & Cellular Proteomics | 2014

Determining Protein Complex Structures Based on a Bayesian Model of in Vivo Förster Resonance Energy Transfer (FRET) Data

Massimiliano Bonomi; Riccardo Pellarin; Seung Joong Kim; Daniel Russel; Bryan A. Sundin; Michael Riffle; Daniel Jaschob; Richard Ramsden; Trisha N. Davis; Eric G D Muller; Andrej Sali

The use of in vivo Förster resonance energy transfer (FRET) data to determine the molecular architecture of a protein complex in living cells is challenging due to data sparseness, sample heterogeneity, signal contributions from multiple donors and acceptors, unequal fluorophore brightness, photobleaching, flexibility of the linker connecting the fluorophore to the tagged protein, and spectral cross-talk. We addressed these challenges by using a Bayesian approach that produces the posterior probability of a model, given the input data. The posterior probability is defined as a function of the dependence of our FRET metric FRETR on a structure (forward model), a model of noise in the data, as well as prior information about the structure, relative populations of distinct states in the sample, forward model parameters, and data noise. The forward model was validated against kinetic Monte Carlo simulations and in vivo experimental data collected on nine systems of known structure. In addition, our Bayesian approach was validated by a benchmark of 16 protein complexes of known structure. Given the structures of each subunit of the complexes, models were computed from synthetic FRETR data with a distance root-mean-squared deviation error of 14 to 17 Å. The approach is implemented in the open-source Integrative Modeling Platform, allowing us to determine macromolecular structures through a combination of in vivo FRETR data and data from other sources, such as electron microscopy and chemical cross-linking.


Journal of Proteome Research | 2016

ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data

Michael Riffle; Daniel Jaschob; Alex Zelter; Trisha N. Davis

ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app.


BMC Research Notes | 2014

SnipViz: a compact and lightweight web site widget for display and dissemination of multiple versions of gene and protein sequences

Daniel Jaschob; Trisha N. Davis; Michael Riffle

BackgroundAs high throughput sequencing continues to grow more commonplace, the need to disseminate the resulting data via web applications continues to grow. Particularly, there is a need to disseminate multiple versions of related gene and protein sequences simultaneously—whether they represent alleles present in a single species, variations of the same gene among different strains, or homologs among separate species. Often this is accomplished by displaying all versions of the sequence at once in a manner that is not intuitive or space-efficient and does not facilitate human understanding of the data. Web-based applications needing to disseminate multiple versions of sequences would benefit from a drop-in module designed to effectively disseminate these data.FindingsSnipViz is a client-side software tool designed to disseminate multiple versions of related gene and protein sequences on web sites. SnipViz has a space-efficient, interactive, and dynamic interface for navigating, analyzing and visualizing sequence data. It is written using standard World Wide Web technologies (HTML, Javascript, and CSS) and is compatible with most web browsers. SnipViz is designed as a modular client-side web component and may be incorporated into virtually any web site and be implemented without any programming.ConclusionsSnipViz is a drop-in client-side module for web sites designed to efficiently visualize and disseminate gene and protein sequences. SnipViz is open source and is freely available at https://github.com/yeastrc/snipviz.


Journal of the American Society for Mass Spectrometry | 2015

Visualization and Dissemination of Multidimensional Proteomics Data Comparing Protein Abundance During Caenorhabditis elegans Development

Michael Riffle; Gennifer Merrihew; Daniel Jaschob; Vagisha Sharma; Trisha N. Davis; William Stafford Noble; Michael J. MacCoss

AbstractRegulation of protein abundance is a critical aspect of cellular function, organism development, and aging. Alternative splicing may give rise to multiple possible proteoforms of gene products where the abundance of each proteoform is independently regulated. Understanding how the abundances of these distinct gene products change is essential to understanding the underlying mechanisms of many biological processes. Bottom-up proteomics mass spectrometry techniques may be used to estimate protein abundance indirectly by sequencing and quantifying peptides that are later mapped to proteins based on sequence. However, quantifying the abundance of distinct gene products is routinely confounded by peptides that map to multiple possible proteoforms. In this work, we describe a technique that may be used to help mitigate the effects of confounding ambiguous peptides and multiple proteoforms when quantifying proteins. We have applied this technique to visualize the distribution of distinct gene products for the whole proteome across 11 developmental stages of the model organism Caenorhabditis elegans. The result is a large multidimensional dataset for which web-based tools were developed for visualizing how translated gene products change during development and identifying possible proteoforms. The underlying instrument raw files and tandem mass spectra may also be downloaded. The data resource is freely available on the web at http://www.yeastrc.org/wormpes/. Graphical Abstractᅟ


Source Code for Biology and Medicine | 2012

JobCenter: an open source, cross-platform, and distributed job queue management system optimized for scalability and versatility

Daniel Jaschob; Michael Riffle

BackgroundLaboratories engaged in computational biology or bioinformatics frequently need to run lengthy, multistep, and user-driven computational jobs. Each job can tie up a computer for a few minutes to several days, and many laboratories lack the expertise or resources to build and maintain a dedicated computer cluster.ResultsJobCenter is a client–server application and framework for job management and distributed job execution. The client and server components are both written in Java and are cross-platform and relatively easy to install. All communication with the server is client-driven, which allows worker nodes to run anywhere (even behind external firewalls or “in the cloud”) and provides inherent load balancing. Adding a worker node to the worker pool is as simple as dropping the JobCenter client files onto any computer and performing basic configuration, which provides tremendous ease-of-use, flexibility, and limitless horizontal scalability. Each worker installation may be independently configured, including the types of jobs it is able to run. Executed jobs may be written in any language and may include multistep workflows.ConclusionsJobCenter is a versatile and scalable distributed job management system that allows laboratories to very efficiently distribute all computational work among available resources. JobCenter is freely available athttp://code.google.com/p/jobcenter/.


BMC Research Notes | 2015

Mason: a JavaScript web site widget for visualizing and comparing annotated features in nucleotide or protein sequences

Daniel Jaschob; Trisha N. Davis; Michael Riffle

BackgroundSequence feature annotations (e.g., protein domain boundaries, binding sites, and secondary structure predictions) are an essential part of biological research. Annotations are widely used by scientists during research and experimental design, and are frequently the result of biological studies. A generalized and simple means of disseminating and visualizing these data via the web would be of value to the research community.FindingsMason is a web site widget designed to visualize and compare annotated features of one or more nucleotide or protein sequence. Annotated features may be of virtually any type, ranging from annotating transcription binding sites or exons and introns in DNA to secondary structure or domain boundaries in proteins. Mason is simple to use and easy to integrate into web sites. Mason has a highly dynamic and configurable interface supporting multiple sets of annotations per sequence, overlapping regions, customization of interface and user-driven events (e.g., clicks and text to appear for tooltips). It is written purely in JavaScript and SVG, requiring no 3rd party plugins or browser customization.ConclusionsMason is a solution for dissemination of sequence annotation data on the web. It is highly flexible, customizable, simple to use, and is designed to be easily integrated into web sites. Mason is open source and freely available at https://github.com/yeastrc/mason.


Proteome | 2017

MetaGOmics: A Web-Based Tool for Peptide-Centric Functional and Taxonomic Analysis of Metaproteomics Data

Michael Riffle; Damon May; Emma Timmins-Schiffman; Molly P. Mikan; Daniel Jaschob; William Stafford Noble; Brook L. Nunn

Metaproteomics is the characterization of all proteins being expressed by a community of organisms in a complex biological sample at a single point in time. Applications of metaproteomics range from the comparative analysis of environmental samples (such as ocean water and soil) to microbiome data from multicellular organisms (such as the human gut). Metaproteomics research is often focused on the quantitative functional makeup of the metaproteome and which organisms are making those proteins. That is: What are the functions of the currently expressed proteins? How much of the metaproteome is associated with those functions? And, which microorganisms are expressing the proteins that perform those functions? However, traditional protein-centric functional analysis is greatly complicated by the large size, redundancy, and lack of biological annotations for the protein sequences in the database used to search the data. To help address these issues, we have developed an algorithm and web application (dubbed “MetaGOmics”) that automates the quantitative functional (using Gene Ontology) and taxonomic analysis of metaproteomics data and subsequent visualization of the results. MetaGOmics is designed to overcome the shortcomings of traditional proteomics analysis when used with metaproteomics data. It is easy to use, requires minimal input, and fully automates most steps of the analysis—including comparing the functional makeup between samples. MetaGOmics is freely available at https://www.yeastrc.org/metagomics/.

Collaboration


Dive into the Daniel Jaschob's collaboration.

Top Co-Authors

Avatar

Michael Riffle

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Zelter

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Andrej Sali

University of California

View shared research outputs
Top Co-Authors

Avatar

Beth Graczyk

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge