Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trond E. Ellingsen is active.

Publication


Featured researches published by Trond E. Ellingsen.


Applied and Environmental Microbiology | 2012

Genome Sequence of Thermotolerant Bacillus methanolicus: Features and Regulation Related to Methylotrophy and Production of l-Lysine and l-Glutamate from Methanol

Tonje Marita Bjerkan Heggeset; Anne Krog; Simone Balzer; Alexander Wentzel; Trond E. Ellingsen; Trygve Brautaset

ABSTRACT Bacillus methanolicus can utilize methanol as its sole carbon and energy source, and the scientific interest in this thermotolerant bacterium has focused largely on exploring its potential as a biocatalyst for the conversion of methanol into l-lysine and l-glutamate. We present here the genome sequences of the important B. methanolicus model strain MGA3 (ATCC 53907) and the alternative wild-type strain PB1 (NCIMB13113). The physiological diversity of these two strains was demonstrated by a comparative fed-batch methanol cultivation displaying highly different methanol consumption and respiration profiles, as well as major differences in their l-glutamate production levels (406 mmol liter−1 and 11 mmol liter−1, respectively). Both genomes are small (ca 3.4 Mbp) compared to those of other related bacilli, and MGA3 has two plasmids (pBM19 and pBM69), while PB1 has only one (pBM20). In particular, we focus here on genes representing biochemical pathways for methanol oxidation and concomitant formaldehyde assimilation and dissimilation, the important phosphoenol pyruvate/pyruvate anaplerotic node, the tricarboxylic acid cycle including the glyoxylate pathway, and the biosynthetic pathways for l-lysine and l-glutamate. Several unique findings were made, including the discovery of three different methanol dehydrogenase genes in each of the two B. methanolicus strains, and the genomic analyses were accompanied by gene expression studies. Our results provide new insight into a number of peculiar physiological and metabolic traits of B. methanolicus and open up possibilities for system-level metabolic engineering of this bacterium for the production of amino acids and other useful compounds from methanol.


PLOS ONE | 2013

Methylotrophic Bacillus methanolicus Encodes Two Chromosomal and One Plasmid Born NAD+ Dependent Methanol Dehydrogenase Paralogs with Different Catalytic and Biochemical Properties

Anne Krog; Tonje Marita Bjerkan Heggeset; Jonas E. N. Müller; Christiane E. Kupper; Olha Schneider; Julia A. Vorholt; Trond E. Ellingsen; Trygve Brautaset

Bacillus methanolicus can utilize methanol as the sole carbon source for growth and it encodes an NAD+-dependent methanol dehydrogenase (Mdh), catalyzing the oxidation of methanol to formaldehyde. Recently, the genomes of the B. methanolicus strains MGA3 (ATCC53907) and PB1 (NCIMB13113) were sequenced and found to harbor three different putative Mdh encoding genes, each belonging to the type III Fe-NAD+-dependent alcohol dehydrogenases. In each strain, two of these genes are encoded on the chromosome and one on a plasmid; only one chromosomal act gene encoding the previously described activator protein ACT was found. The six Mdhs and the ACT proteins were produced recombinantly in Escherichia coli, purified, and characterized. All Mdhs required NAD+ as cosubstrate, were catalytically stimulated by ACT, exhibited a broad and different substrate specificity range and displayed both dehydrogenase and reductase activities. All Mdhs catalyzed the oxidation of methanol; however the catalytic activity for methanol was considerably lower than for most other alcohols tested, suggesting that these enzymes represent a novel class of alcohol dehydrogenases. The kinetic constants for the Mdhs were comparable when acting as pure enzymes, but together with ACT the differences were more pronounced. Quantitative PCR experiments revealed major differences with respect to transcriptional regulation of the paralogous genes. Taken together our data indicate that the repertoire of methanol oxidizing enzymes in thermotolerant bacilli is larger than expected with complex mechanisms involved in their regulation.


Molecular & Cellular Proteomics | 2012

Metabolic Switches and Adaptations Deduced from the Proteomes of Streptomyces coelicolor Wild Type and phoP Mutant Grown in Batch Culture

Louise Thomas; David A. Hodgson; Alexander Wentzel; Kay Nieselt; Trond E. Ellingsen; Jonathan D. Moore; Edward R. Morrissey; Roxane Legaie; Wolfgang Wohlleben; Antonio Rodríguez-García; Juan F. Martín; Nigel John Burroughs; Elizabeth M. H. Wellington; Margaret C. M. Smith

Bacteria in the genus Streptomyces are soil-dwelling oligotrophs and important producers of secondary metabolites. Previously, we showed that global messenger RNA expression was subject to a series of metabolic and regulatory switches during the lifetime of a fermentor batch culture of Streptomyces coelicolor M145. Here we analyze the proteome from eight time points from the same fermentor culture and, because phosphate availability is an important regulator of secondary metabolite production, compare this to the proteome of a similar time course from an S. coelicolor mutant, INB201 (ΔphoP), defective in the control of phosphate utilization. The proteomes provide a detailed view of enzymes involved in central carbon and nitrogen metabolism. Trends in protein expression over the time courses were deduced from a protein abundance index, which also revealed the importance of stress pathway proteins in both cultures. As expected, the ΔphoP mutant was deficient in expression of PhoP-dependent genes, and several putatively compensatory metabolic and regulatory pathways for phosphate scavenging were detected. Notably there is a succession of switches that coordinately induce the production of enzymes for five different secondary metabolite biosynthesis pathways over the course of the batch cultures.


Applied Microbiology and Biotechnology | 2012

Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor

Juan F. Martín; Fernando Santos-Beneit; Antonio Rodríguez-García; Alberto Sola-Landa; Margaret C. M. Smith; Trond E. Ellingsen; Kay Nieselt; Nigel John Burroughs; Ellizabeth M. H. Wellington

Phosphate controls the biosynthesis of many classes of secondary metabolites that belong to different biosynthetic groups, indicating that phosphate control is a general mechanism governing secondary metabolism. We refer in this article to the molecular mechanisms of regulation, mediated by the two-component system PhoR–PhoP, of the primary metabolism and the biosynthesis of antibiotics. The two-component PhoR–PhoP system is conserved in all Streptomyces and related actinobacteria sequenced so far, and involves a third component PhoU that modulates the signal transduction cascade. The PhoP DNA-binding sequence is well characterized in Streptomyces coelicolor. It comprises at least two direct repeat units of 11 nt, the first seven of which are highly conserved. Other less conserved direct repeats located adjacent to the core ones can also be bound by PhoP through cooperative protein–protein interactions. The phoR–phoP operon is self-activated and requires phosphorylated PhoP to mediate the full response. About 50 up-regulated PhoP-dependent genes have been identified by comparative transcriptomic studies between the parental S. coelicolor M145 and the ΔphoP mutant strains. The PhoP regulation of several of these genes has been studied in detail using EMSA and DNase I footprinting studies as well as in vivo expression studies with reporter genes and RT-PCR transcriptomic analyses.


Metabolites | 2012

Intracellular Metabolite Pool Changes in Response to Nutrient Depletion Induced Metabolic Switching in Streptomyces coelicolor

Alexander Wentzel; Håvard Sletta; Trond E. Ellingsen; Per Bruheim

A metabolite profiling study of the antibiotic producing bacterium Streptomyces coelicolor A3(2) has been performed. The aim of this study was to monitor intracellular metabolite pool changes occurring as strains of S. coelicolor react to nutrient depletion with metabolic re-modeling, so-called metabolic switching, and transition from growth to secondary metabolite production phase. Two different culture media were applied, providing depletion of the key nutrients phosphate and L-glutamate, respectively, as the triggers for metabolic switching. Targeted GC-MS and LC-MS methods were employed to quantify important primary metabolite groups like amino acids, organic acids, sugar phosphates and other phosphorylated metabolites, and nucleotides in time-course samples withdrawn from fully-controlled batch fermentations. A general decline, starting already in the early growth phase, was observed for nucleotide pools and phosphorylated metabolite pools for both the phosphate and glutamate limited cultures. The change in amino acid and organic acid pools were more scattered, especially in the phosphate limited situation while a general decrease in amino acid and non-amino organic acid pools was observed in the L-glutamate limited situation. A phoP deletion mutant showed basically the same metabolite pool changes as the wild-type strain M145 when cultivated on phosphate limited medium. This implies that the inactivation of the phoP gene has only little effect on the detected metabolite levels in the cell. The energy charge was found to be relatively constant during growth, transition and secondary metabolite production phase. The results of this study and the employed targeted metabolite profiling methodology are directly relevant for the evaluation of precursor metabolite and energy supply for both natural and heterologous production of secondary metabolites in S. coelicolor.


Applied and Environmental Microbiology | 2011

New Nystatin-Related Antifungal Polyene Macrolides with Altered Polyol Region Generated via Biosynthetic Engineering of Streptomyces noursei

Trygve Brautaset; Håvard Sletta; Kristin F. Degnes; Olga N. Sekurova; Ingrid Bakke; Olga Volokhan; Trygve Andreassen; Trond E. Ellingsen; Sergey B. Zotchev

ABSTRACT Polyene macrolide antibiotics, including nystatin and amphotericin B, possess fungicidal activity and are being used as antifungal agents to treat both superficial and invasive fungal infections. Due to their toxicity, however, their clinical applications are relatively limited, and new-generation polyene macrolides with an improved therapeutic index are highly desirable. We subjected the polyol region of the heptaene nystatin analogue S44HP to biosynthetic engineering designed to remove and introduce hydroxyl groups in the C-9-C-10 region. This modification strategy involved inactivation of the P450 monooxygenase NysL and the dehydratase domain in module 15 (DH15) of the nystatin polyketide synthase. Subsequently, these modifications were combined with replacement of the exocyclic C-16 carboxyl with the methyl group through inactivation of the P450 monooxygenase NysN. Four new polyene macrolides with up to three chemical modifications were generated, produced at relatively high yields (up to 0.51 g/liter), purified, structurally characterized, and subjected to in vitro assays for antifungal and hemolytic activities. Introduction of a C-9 hydroxyl by DH15 inactivation also blocked NysL-catalyzed C-10 hydroxylation, and these modifications caused a drastic decrease in both antifungal and hemolytic activities of the resulting analogues. In contrast, single removal of the C-10 hydroxyl group by NysL inactivation had only a marginal effect on these activities. Results from the extended antifungal assays strongly suggested that the 9-hydroxy-10-deoxy S44HP analogues became fungistatic rather than fungicidal antibiotics.


BMC Systems Biology | 2013

Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling

Sven E. F. Borgos; Sergio Bordel; Håvard Sletta; Helga Ertesvåg; Øyvind Mejdell Jakobsen; Per Bruheim; Trond E. Ellingsen; Jens Nielsen; Svein Valla

BackgroundAlginate is an industrially important polysaccharide, currently produced commercially by harvesting of marine brown sea-weeds. The polymer is also synthesized as an exo-polysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter, and these organisms may represent an alternative alginate source in the future. The current work describes an attempt to rationally develop a biological system tuned for very high levels of alginate production, based on a fundamental understanding of the system through metabolic modeling supported by transcriptomics studies and carefully controlled fermentations.ResultsAlginate biosynthesis in Pseudomonas fluorescens was studied in a genomics perspective, using an alginate over-producing strain carrying a mutation in the anti-sigma factor gene mucA. Cells were cultivated in chemostats under nitrogen limitation on fructose or glycerol as carbon sources, and cell mass, growth rate, sugar uptake, alginate and CO2 production were monitored. In addition a genome scale metabolic model was constructed and samples were collected for transcriptome analyses. The analyses show that polymer production operates in a close to optimal way with respect to stoichiometric utilization of the carbon source and that the cells increase the uptake of carbon source to compensate for the additional needs following from alginate synthesis. The transcriptome studies show that in the presence of the mucA mutation, the alg operon is upregulated together with genes involved in energy generation, genes on both sides of the succinate node of the TCA cycle and genes encoding ribosomal and other translation-related proteins. Strains expressing a functional MucA protein (no alginate production) synthesize cellular biomass in an inefficient way, apparently due to a cycle that involves oxidation of NADPH without ATP production. The results of this study indicate that the most efficient way of using a mucA mutant as a cell factory for alginate production would be to use non-growing conditions and nitrogen deprivation.ConclusionsThe insights gained in this study should be very useful for a future efficient production of microbial alginates.


Applied Microbiology and Biotechnology | 2016

Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids

Inga Marie Aasen; Helga Ertesvåg; Tonje Marita Bjerkan Heggeset; Bin Liu; Trygve Brautaset; Olav Vadstein; Trond E. Ellingsen

Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20xa0years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.


BMC Systems Biology | 2012

Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2)

Alexander Wentzel; Per Bruheim; Anders Øverby; Øyvind Mejdell Jakobsen; Håvard Sletta; Walid A.M. Omara; David A. Hodgson; Trond E. Ellingsen

BackgroundSystems biology approaches to study metabolic switching in Streptomyces coelicolor A3(2) depend on cultivation conditions ensuring high reproducibility and distinct phases of culture growth and secondary metabolite production. In addition, biomass concentrations must be sufficiently high to allow for extensive time-series sampling before occurrence of a given nutrient depletion for transition triggering. The present study describes for the first time the development of a dedicated optimized submerged batch fermentation strategy as the basis for highly time-resolved systems biology studies of metabolic switching in S. coelicolor A3(2).ResultsBy a step-wise approach, cultivation conditions and two fully defined cultivation media were developed and evaluated using strain M145 of S. coelicolor A3(2), providing a high degree of cultivation reproducibility and enabling reliable studies of the effect of phosphate depletion and L-glutamate depletion on the metabolic transition to antibiotic production phase. Interestingly, both of the two carbon sources provided, D- glucose and L-glutamate, were found to be necessary in order to maintain high growth rates and prevent secondary metabolite production before nutrient depletion. Comparative analysis of batch cultivations with (i) both L-glutamate and D- glucose in excess, (ii) L-glutamate depletion and D- glucose in excess, (iii) L-glutamate as the sole source of carbon and (iv) D- glucose as the sole source of carbon, reveal a complex interplay of the two carbon sources in the bacteriums central carbon metabolism.ConclusionsThe present study presents for the first time a dedicated cultivation strategy fulfilling the requirements for systems biology studies of metabolic switching in S. coelicolor A3(2). Key results from labelling and cultivation experiments on either or both of the two carbon sources provided indicate that in the presence of D- glucose, L-glutamate was the preferred carbon source, while D- glucose alone appeared incapable of maintaining culture growth, likely due to a metabolic bottleneck at the oxidation of pyruvate to acetyl-CoA.


Applied and Environmental Microbiology | 2013

Combinatorial Mutagenesis and Selection of Improved Signal Sequences and Their Application for High-Level Production of Translocated Heterologous Proteins in Escherichia coli

Tonje Marita Bjerkan Heggeset; Veronika Kucharova; Ingemar Nærdal; Svein Valla; Håvard Sletta; Trond E. Ellingsen; Trygve Brautaset

ABSTRACT We previously designed the consensus signal peptide (CSP) and demonstrated that it can be used to strongly stimulate heterologous protein production in Escherichia coli. A comparative study using CSP and two bacterial signal sequences, pelB and ompA, showed that the effect of signal sequences on both expression level and translocation efficiency can be highly protein specific. We report here the generation of CSP mutant libraries by a combinatorial mutagenesis approach. Degenerated CSP oligonucleotides were cloned in frame with the 5′ end of the bla gene, encoding the mature periplasmic β-lactamase released from its native signal sequence. This novel design allows for a direct selection of improved signal sequences that positively affect the expression level and/or translocation efficiency of β-lactamase, based on the ampicillin tolerance level of the E. coli host cells. By using this strategy, 61 different CSP mutants with up to 8-fold-increased ampicillin tolerance level and up to 5.5-fold-increased β-lactamase expression level were isolated and characterized genetically. A subset of the CSP mutants was then tested with the alternative reporter gene phoA, encoding periplasmic alkaline phosphatase (AP), resulting in an up to 8-fold-increased production level of active AP protein in E. coli. Moreover, it was demonstrated that the CSP mutants can improve the production of the medically important human interferon α2b under high-cell-density cultivations. Our results show that there is a clear potential for improving bacterial signal sequences by using combinatorial mutagenesis, and bioinformatics analyses indicated that the beneficial mutations could not be rationally predicted.

Collaboration


Dive into the Trond E. Ellingsen's collaboration.

Top Co-Authors

Avatar

Trygve Brautaset

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Svein Valla

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Helga Ertesvåg

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Per Bruheim

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kay Nieselt

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge