Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trudie Lang is active.

Publication


Featured researches published by Trudie Lang.


The New England Journal of Medicine | 2011

Mortality after Fluid Bolus in African Children with Severe Infection

Kathryn Maitland; Sarah Kiguli; Robert O. Opoka; Charles Engoru; Peter Olupot-Olupot; Samuel Akech; Richard Nyeko; George Mtove; Hugh Reyburn; Trudie Lang; Bernadette Brent; Jennifer Evans; James K. Tibenderana; Jane Crawley; Elizabeth C. Russell; Michael Levin; Abdel Babiker; Diana M. Gibb

BACKGROUND The role of fluid resuscitation in the treatment of children with shock and life-threatening infections who live in resource-limited settings is not established. METHODS We randomly assigned children with severe febrile illness and impaired perfusion to receive boluses of 20 to 40 ml of 5% albumin solution (albumin-bolus group) or 0.9% saline solution (saline-bolus group) per kilogram of body weight or no bolus (control group) at the time of admission to a hospital in Uganda, Kenya, or Tanzania (stratum A); children with severe hypotension were randomly assigned to one of the bolus groups only (stratum B). All children received appropriate antimicrobial treatment, intravenous maintenance fluids, and supportive care, according to guidelines. Children with malnutrition or gastroenteritis were excluded. The primary end point was 48-hour mortality; secondary end points included pulmonary edema, increased intracranial pressure, and mortality or neurologic sequelae at 4 weeks. RESULTS The data and safety monitoring committee recommended halting recruitment after 3141 of the projected 3600 children in stratum A were enrolled. Malaria status (57% overall) and clinical severity were similar across groups. The 48-hour mortality was 10.6% (111 of 1050 children), 10.5% (110 of 1047 children), and 7.3% (76 of 1044 children) in the albumin-bolus, saline-bolus, and control groups, respectively (relative risk for saline bolus vs. control, 1.44; 95% confidence interval [CI], 1.09 to 1.90; P=0.01; relative risk for albumin bolus vs. saline bolus, 1.01; 95% CI, 0.78 to 1.29; P=0.96; and relative risk for any bolus vs. control, 1.45; 95% CI, 1.13 to 1.86; P=0.003). The 4-week mortality was 12.2%, 12.0%, and 8.7% in the three groups, respectively (P=0.004 for the comparison of bolus with control). Neurologic sequelae occurred in 2.2%, 1.9%, and 2.0% of the children in the respective groups (P=0.92), and pulmonary edema or increased intracranial pressure occurred in 2.6%, 2.2%, and 1.7% (P=0.17), respectively. In stratum B, 69% of the children (9 of 13) in the albumin-bolus group and 56% (9 of 16) in the saline-bolus group died (P=0.45). The results were consistent across centers and across subgroups according to the severity of shock and status with respect to malaria, coma, sepsis, acidosis, and severe anemia. CONCLUSIONS Fluid boluses significantly increased 48-hour mortality in critically ill children with impaired perfusion in these resource-limited settings in Africa. (Funded by the Medical Research Council, United Kingdom; FEAST Current Controlled Trials number, ISRCTN69856593.).


The New England Journal of Medicine | 2008

Efficacy of RTS,S/AS01E Vaccine against Malaria in Children 5 to 17 Months of Age

Philip Bejon; John Lusingu; Ally Olotu; Amanda Leach; Marc Lievens; Johan Vekemans; Salum Mshamu; Trudie Lang; Jayne Gould; Marie-Claude Dubois; Marie-Ange Demoitié; Jean-Francois Stallaert; Preeti Vansadia; Terrell Carter; Patricia Njuguna; Ken Awuondo; Anangisye Malabeja; Omar Abdul; Samwel Gesase; Neema Mturi; Chris Drakeley; Barbara Savarese; Tonya Villafana; W. Ripley Ballou; Joe Cohen; Eleanor M. Riley; Martha M. Lemnge; Kevin Marsh; Lorenz von Seidlein

BACKGROUND Plasmodium falciparum malaria is a pressing global health problem. A previous study of the malaria vaccine RTS,S (which targets the circumsporozoite protein), given with an adjuvant system (AS02A), showed a 30% rate of protection against clinical malaria in children 1 to 4 years of age. We evaluated the efficacy of RTS,S given with a more immunogenic adjuvant system (AS01E) in children 5 to 17 months of age, a target population for vaccine licensure. METHODS We conducted a double-blind, randomized trial of RTS,S/AS01E vaccine as compared with rabies vaccine in children in Kilifi, Kenya, and Korogwe, Tanzania. The primary end point was fever with a falciparum parasitemia density of more than 2500 parasites per microliter, and the mean duration of follow-up was 7.9 months (range, 4.5 to 10.5). RESULTS A total of 894 children were randomly assigned to receive the RTS,S/AS01E vaccine or the control (rabies) vaccine. Among the 809 children who completed the study procedures according to the protocol, the cumulative number in whom clinical malaria developed was 32 of 402 assigned to receive RTS,S/AS01E and 66 of 407 assigned to receive the rabies vaccine; the adjusted efficacy rate for RTS,S/AS01E was 53% (95% confidence interval [CI], 28 to 69; P<0.001) on the basis of Cox regression. Overall, there were 38 episodes of clinical malaria among recipients of RTS,S/AS01E, as compared with 86 episodes among recipients of the rabies vaccine, with an adjusted rate of efficacy against all malarial episodes of 56% (95% CI, 31 to 72; P<0.001). All 894 children were included in the intention-to-treat analysis, which showed an unadjusted efficacy rate of 49% (95% CI, 26 to 65; P<0.001). There were fewer serious adverse events among recipients of RTS,S/AS01E, and this reduction was not only due to a difference in the number of admissions directly attributable to malaria. CONCLUSIONS RTS,S/AS01E shows promise as a candidate malaria vaccine. (ClinicalTrials.gov number, NCT00380393.)


Lancet Infectious Diseases | 2011

Efficacy of RTS,S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5–17 months in Kenya and Tanzania: a randomised controlled trial

Ally Olotu; John Lusingu; Amanda Leach; Marc Lievens; Johan Vekemans; Salum Msham; Trudie Lang; Jayne Gould; Marie-Claude Dubois; Erik Jongert; Preeti Vansadia; Terrell Carter; Patricia Njuguna; Ken Awuondo; Anangisye Malabeja; Omar Abdul; Samwel Gesase; Neema Mturi; Chris Drakeley; Barbara Savarese; Tonya Villafana; Didier Lapierre; W. Ripley Ballou; Joe Cohen; Martha M. Lemnge; Norbert Peshu; Kevin Marsh; Eleanor M. Riley; Lorenz von Seidlein; Philip Bejon

Summary Background RTS,S/AS01E is the lead candidate malaria vaccine. We recently showed efficacy against clinical falciparum malaria in 5–17 month old children, during an average of 8 months follow-up. We aimed to assess the efficacy of RTS,S/AS01E during 15 months of follow-up. Methods Between March, 2007, and October, 2008, we enrolled healthy children aged 5–17 months in Kilifi, Kenya, and Korogwe, Tanzania. Computer-generated block randomisation was used to randomly assign participants (1:1) to receive three doses (at month 0, 1, and 2) of either RTS,S/AS01E or human diploid-cell rabies vaccine. The primary endpoint was time to first clinical malaria episode, defined as the presence of fever (temperature ≥37·5°C) and a Plasmodium falciparum density of 2500/μL or more. Follow-up was 12 months for children from Korogwe and 15 months for children from Kilifi. Primary analysis was per protocol. In a post-hoc modelling analysis we characterised the associations between anti-circumsporozoite antibodies and protection against clinical malaria episodes. This study is registered with ClinicalTrials.gov, number NCT00380393. Findings 894 children were assigned, 447 in each treatment group. In the per-protocol analysis, 82 of 415 children in the RTS,S/AS01E group and 125 of 420 in the rabies vaccine group had first or only clinical malaria episode by 12 months, vaccine efficacy 39·2% (95% CI 19·5–54·1, p=0·0005). At 15 months follow-up, 58 of 209 children in the RTS,S/AS01E group and 85 of 206 in the rabies vaccine group had first or only clinical malaria episode, vaccine efficacy 45·8% (24·1–61·3, p=0·0004). At 12 months after the third dose, anti-circumsporozoite antibody titre data were available for 390 children in the RTS,S/AS01E group and 391 in the rabies group. A mean of 15 months (range 12–18 months) data were available for 172 children in the RTS,S/AS01E group and 155 in the rabies group. These titres at 1 month after the third dose were not associated with protection, but titres at 6·5 months were. The level of protection increased abruptly over a narrow range of antibody concentrations. The most common adverse events were pneumonia, febrile convulsion, gastroenteritis, and P falciparum malaria. Interpretation RTS,S/AS01E confers sustained efficacy for at least 15 months and shows promise as a potential public health intervention against childhood malaria in malaria endemic countries. Funding PATH Malaria Vaccine Initiative (MVI), GlaxoSmithKline.


PLOS Clinical Trials | 2006

A Phase 2b Randomised Trial of the Candidate Malaria Vaccines FP9 ME-TRAP and MVA ME-TRAP among Children in Kenya

Philip Bejon; Jedidah Mwacharo; Oscar Kai; Tabitha W. Mwangi; Paul Milligan; Stephen Todryk; Sheila M. Keating; Trudie Lang; Brett Lowe; Caroline Gikonyo; Catherine Molyneux; Greg Fegan; Sarah C. Gilbert; Norbert Peshu; Kevin Marsh; Adrian V. S. Hill

Objective: The objective was to measure the efficacy of the vaccination regimen FFM ME-TRAP in preventing episodes of clinical malaria among children in a malaria endemic area. FFM ME-TRAP is sequential immunisation with two attenuated poxvirus vectors (FP9 and modified vaccinia virus Ankara), which both deliver the pre-erythrocytic malaria antigen construct multiple epitope–thrombospondin-related adhesion protein (ME-TRAP). Design: The trial was randomised and double-blinded. Setting: The setting was a rural, malaria-endemic area of coastal Kenya. Participants: We vaccinated 405 healthy 1- to 6-year-old children. Interventions: Participants were randomised to vaccination with either FFM ME-TRAP or control (rabies vaccine). Outcome Measures: Following antimalarial drug treatment children were seen weekly and whenever they were unwell during nine months of monitoring. The axillary temperature was measured, and blood films taken when febrile. The primary analysis was time to a parasitaemia of over 2,500 parasites/μl. Results: The regime was moderately immunogenic, but the magnitude of T cell responses was lower than in previous studies. In intention to treat (ITT) analysis, time to first episode was shorter in the FFM ME-TRAP group. The cumulative incidence of febrile malaria was 52/190 (27%) for FFM ME-TRAP and 40/197 (20%) among controls (hazard ratio = 1.52). This was not statistically significant (95% confidence interval [CI] 1.0–2.3; p = 0.14 by log-rank). A group of 346 children were vaccinated according to protocol (ATP). Among these children, the hazard ratio was 1.3 (95% CI 0.8–2.1; p = 0.55 by log-rank). When multiple malaria episodes were included in the analyses, the incidence rate ratios were 1.6 (95% CI 1.1–2.3); p = 0.017 for ITT, and 1.4 (95% CI 0.9–2.1); p = 0.16 for ATP. Haemoglobin and parasitaemia in cross-sectional surveys at 3 and 9 mo did not differ by treatment group. Among children vaccinated with FFM ME-TRAP, there was no correlation between immunogenicity and malaria incidence. Conclusions: No protection was induced against febrile malaria by this vaccine regimen. Future field studies will require vaccinations with stronger immunogenicity in children living in malarious areas.


Journal of Immunology | 2007

The Induction and Persistence of T Cell IFN-γ Responses after Vaccination or Natural Exposure Is Suppressed by Plasmodium falciparum

Philip Bejon; Jedidah Mwacharo; Oscar Kai; Stephen Todryk; Sheila M. Keating; Brett Lowe; Trudie Lang; Tabitha W. Mwangi; Sarah C. Gilbert; Norbert Peshu; Kevin Marsh; Adrian V. S. Hill

Epidemiological observations suggest that T cell immunity may be suppressed in malaria-endemic areas. In vitro studies, animal models, and limited data in humans link immunosuppression with malaria, malnutrition, and other parasitic infections. However, there are no data to determine whether malaria-induced immunosuppression is significant in the long-term, or relative data comparing it with other factors in malaria-endemic areas, so as to measure the impact of malaria, other parasitic disease, nutritional status, age. and location on the acquisition and longevity of IFN-γ responses in children in Kenya. We studied these factors in two cohorts of 1- to 6-year-old children in a malaria-endemic area. T cell responses were induced by vaccination in one cohort, and acquired as a result of natural exposure in a second cohort. Serial ELISPOT assays conducted over a 1-year period measured the induction and kinetics of IFN-γ production in response to the malaria Ag thrombospondin-related adhesion protein. Induced responses in both cohorts and the longevity of response in the vaccinated cohort were fitted to potential explanatory variables. Parasitemia was prospectively associated with reduced IFN-γ-producing T cells in both cohorts (by 15–25%), and both parasitemia and episodes of febrile malaria were associated with 19 and 31% greater attrition of T cell responses, respectively. Malaria may reduce the efficacy vaccinations such as bacillus Calmette-Guérin and investigational T cell-inducing vaccines, and may delay the acquisition of immunity following natural exposure to malaria and other pathogens.


PLOS Medicine | 2016

Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-Arm Phase 2 Clinical Trial

Jake Dunning; Foday Sahr; Amanda Rojek; Fiona Gannon; Gail Carson; Baimba Idriss; Thomas Massaquoi; Regina Gandi; Sebatu Joseph; Hassan K. Osman; Timothy J G Brooks; Andrew J. H. Simpson; Ian Goodfellow; Lucy Thorne; Armando Arias; Laura Merson; Lyndsey Castle; Rebecca Howell-Jones; Raul Pardinaz-Solis; Benjamin Hope-Gill; Mauricio Ferri; Jennifer Grove; Mark Kowalski; Kasia Stepniewska; Trudie Lang; John Whitehead; Piero Olliaro; Mohammed Samai; Peter Horby

Background TKM-130803, a small interfering RNA lipid nanoparticle product, has been developed for the treatment of Ebola virus disease (EVD), but its efficacy and safety in humans has not been evaluated. Methods and Findings In this single-arm phase 2 trial, adults with laboratory-confirmed EVD received 0.3 mg/kg of TKM-130803 by intravenous infusion once daily for up to 7 d. On days when trial enrolment capacity was reached, patients were enrolled into a concurrent observational cohort. The primary outcome was survival to day 14 after admission, excluding patients who died within 48 h of admission. After 14 adults with EVD had received TKM-130803, the pre-specified futility boundary was reached, indicating a probability of survival to day 14 of ≤0.55, and enrolment was stopped. Pre-treatment geometric mean Ebola virus load in the 14 TKM-130803 recipients was 2.24 × 109 RNA copies/ml plasma (95% CI 7.52 × 108, 6.66 × 109). Two of the TKM-130803 recipients died within 48 h of admission and were therefore excluded from the primary outcome analysis. Of the remaining 12 TKM-130803 recipients, nine died and three survived. The probability that a TKM-130803 recipient who survived for 48 h will subsequently survive to day 14 was estimated to be 0.27 (95% CI 0.06, 0.58). TKM-130803 infusions were well tolerated, with 56 doses administered and only one possible infusion-related reaction observed. Three patients were enrolled in the observational cohort, of whom two died. Conclusions Administration of TKM-130803 at a dose of 0.3 mg/kg/d by intravenous infusion to adult patients with severe EVD was not shown to improve survival when compared to historic controls. Trial registration Pan African Clinical Trials Registry PACTR201501000997429


PLOS Medicine | 2012

Clinical Trials Have Gone Global: Is This a Good Thing?

Trudie Lang; Sisira Siribaddana

As part of a cluster of articles leading up to the 2012 World Health Report and critically reflecting on the theme of “no health without research,” Trudie Lang and Sisira Siribaddana discuss the value and challenges of doing clinical trials in developing countries.


Science | 2011

Advancing Global Health Research Through Digital Technology and Sharing Data

Trudie Lang

The imperative for improving health in the world’s poorest regions lies in research, yet there is no question that low participation, a lack of trained staff, and limited opportunities for data sharing in developing countries impede advances in medical practice and public health knowledge. Extensive studies are essential to develop new treatments and to identify better ways to manage healthcare issues. Recent rapid advances in availability and uptake of digital technologies, especially of mobile networks, have the potential to overcome several barriers to collaborative research in remote places with limited access to resources. Many research groups are already taking advantage of these technologies for data sharing and capture, and these initiatives indicate that increasing acceptance and use of digital technology could promote rapid improvements in global medical science.


PLOS Neglected Tropical Diseases | 2010

Clinical Research in Resource-Limited Settings: Enhancing Research Capacity and Working Together to Make Trials Less Complicated

Trudie Lang; Nicholas J. White; Tran Tinh Hien; Jeremy Farrar; Nicholas P. J. Day; Ray Fitzpatrick; Brian Angus; Emmanuelle Denis; Laura Merson; Phaik Yeong Cheah; Roma Chilengi; Robert Kimutai; Kevin Marsh

Our aim is to raise awareness of the issues faced by researchers in developing countries and to introduce an initiative we are developing. We propose that the gaps and issues we have outlined could be largely addressed by building a community of researchers from all the various roles who will be able to access the information, guidance and resources they need, whilst also be able to share methods and pragmatic operational practices that have been locally derived and known to work. Some examples include template consent forms, data management systems, and example protocols and laboratory sample collection and handling methods. We emphasize that this initiative is entirely based on an ethos of collaboration, open access, and sharing practice; indeed it will only be successful if research groups both use the resource and contribute to its development. The development of a prototype of web site for this initiative is underway and can be found at http://pilot.globalhealthtrials.org/. We are making this public at this early juncture as we are seeking involvement from our colleagues right from the outset in line with the open and collaborative ethos that is envisaged. Therefore, we encourage colleagues to become part of this initiative by providing content, commenting on the Web site, and sharing their operational tools. We also welcome all those engaged in trials to register and build their own personal professional development record to track their career and training record, and to provide a review structure.


Clinical Infectious Diseases | 2006

Safety Profile of the Viral Vectors of Attenuated Fowlpox Strain FP9 and Modified Vaccinia Virus Ankara Recombinant for Either of 2 Preerythrocytic Malaria Antigens, ME-TRAP or the Circumsporozoite Protein, in Children and Adults in Kenya

Philip Bejon; Norbert Peshu; Sarah C. Gilbert; Brett Lowe; Catherine Molyneux; John Forsdyke; Trudie Lang; Adrian V. S. Hill; Kevin Marsh

BACKGROUND We are developing a heterologous prime-boost vaccine strategy against malaria. This approach uses sequential immunization with different vectors to deliver a common preerythrocytic malaria antigen. Preliminary evidence of efficacy and safety has been previously documented in studies from an area where malaria is nonendemic. Additional safety data from an area where malaria is endemic are now required before larger-scale studies are undertaken to determine the efficacy of this vaccine strategy in the field. Other modified vaccinia virus Ankara (MVA) recombinants and prime-boost immunizations are being developed as vaccines against human immunodeficiency virus (HIV) infection, tuberculosis, and cancer, and MVA is a candidate attenuated smallpox vaccine. METHODS Candidate vaccines against malaria were intradermally administered to 73 adults (7 of whom were HIV positive) and 22 children in Kenya. These vaccines used the attenuated fowlpox strain FP9 and the MVA recombinant for either of 2 preerythrocytic malaria antigens, multiple preerythrocytic-stage epitopes joined with the preerythrocytic-stage antigen TRAP (ME-TRAP) and the circumsporozoite protein (CS). Adverse events were recorded. RESULTS Reactogenicity was mild. MVA caused less frequent and less severe cutaneous reaction if given after FP9 priming. Half doses reduced the frequency and the severity of systemic reactogenicity, and particular vaccine lots were associated with different reactogenicities. Unexpectedly, prior immunity to the ME-TRAP antigen appeared to be protective against local reactions after immunization. CONCLUSIONS Where the final intention is to use MVA after FP9 priming, previous testing of MVA alone overestimates reactogenicity. These recombinant vectors appear to be safe and suitable for use in larger-scale studies of children in Africa and of HIV-positive individuals.

Collaboration


Dive into the Trudie Lang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piero Olliaro

World Health Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge