Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsung-Hsien Chang is active.

Publication


Featured researches published by Tsung-Hsien Chang.


Nature Reviews Immunology | 2008

TRIM family proteins and their emerging roles in innate immunity

Keiko Ozato; Dong-Mi Shin; Tsung-Hsien Chang; Herbert C. Morse

The superfamily of tripartite motif-containing (TRIM) proteins is conserved throughout the metazoan kingdom and has expanded rapidly during vertebrate evolution; there are now more than 60 TRIM proteins known in humans and mice. Many TRIM proteins are induced by type I and type II interferons, which are crucial for many aspects of resistance to pathogens, and several are known to be required for the restriction of infection by lentiviruses. In this Review, we describe recent data that reveal broader antiviral and antimicrobial activities of TRIM proteins and discuss their involvement in the regulation of pathogen-recognition and transcriptional pathways in host defence.


PLOS Pathogens | 2009

Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery.

Tsung-Hsien Chang; Toru Kubota; Mayumi Matsuoka; Steven M. Jones; Steven B. Bradfute; Mike Bray; Keiko Ozato

Ebola Zaire virus is highly pathogenic for humans, with case fatality rates approaching 90% in large outbreaks in Africa. The virus replicates in macrophages and dendritic cells (DCs), suppressing production of type I interferons (IFNs) while inducing the release of large quantities of proinflammatory cytokines. Although the viral VP35 protein has been shown to inhibit IFN responses, the mechanism by which it blocks IFN production has not been fully elucidated. We expressed VP35 from a mouse-adapted variant of Ebola Zaire virus in murine DCs by retroviral gene transfer, and tested for IFN transcription upon Newcastle Disease virus (NDV) infection and toll-like receptor signaling. We found that VP35 inhibited IFN transcription in DCs following these stimuli by disabling the activity of IRF7, a transcription factor required for IFN transcription. By yeast two-hybrid screens and coimmunoprecipitation assays, we found that VP35 interacted with IRF7, Ubc9 and PIAS1. The latter two are the host SUMO E2 enzyme and E3 ligase, respectively. VP35, while not itself a SUMO ligase, increased PIAS1-mediated SUMOylation of IRF7, and repressed Ifn transcription. In contrast, VP35 did not interfere with the activation of NF-κB, which is required for induction of many proinflammatory cytokines. Our findings indicate that Ebola Zaire virus exploits the cellular SUMOylation machinery for its advantage and help to explain how the virus overcomes host innate defenses, causing rapidly overwhelming infection to produce a syndrome resembling fulminant septic shock.


Journal of Biological Chemistry | 2008

Virus Infection Triggers SUMOylation of IRF3 and IRF7, Leading to the Negative Regulation of Type I Interferon Gene Expression

Toru Kubota; Mayumi Matsuoka; Tsung-Hsien Chang; Prafullakumar Tailor; Tsuguo Sasaki; Masato Tashiro; Atsushi Kato; Keiko Ozato

Viral infection activates Toll-like receptor and RIG-I (retinoic acid-inducible gene I) signaling pathways, leading to phosphorylation of IRF3 (interferon regulatory factor 3) and IRF7 and stimulation of type I interferon (IFN) transcription, a process important for innate immunity. We show that upon vesicular stomatitis virus infection, IRF3 and IRF7 are modified not only by phosphorylation but by the small ubiquitin-related modifiers SUMO1, SUMO2, and SUMO3. SUMOylation of IRF3 and IRF7 was dependent on the activation of Toll-like receptor and RIG-I pathways but not on the IFN-stimulated pathway. However, SUMOylation of IRF3 and IRF7 was not dependent on their phosphorylation, and vice versa. We identified Lys152 of IRF3 and Lys406 of IRF7 to be their sole small ubiquitin-related modifier (SUMO) conjugation site. IRF3 and IRF7 mutants defective in SUMOylation led to higher levels of IFN mRNA induction after viral infection, relative to the wild type IRFs, indicating a negative role for SUMOylation in IFN transcription. Together, SUMO modification is an integral part of IRF3 and IRF7 activity that contributes to postactivation attenuation of IFN production.


Journal of Immunology | 2009

Comment on “Gene Disruption Study Reveals a Nonredundant Role for TRIM21/Ro52 in NF-κB-Dependent Cytokine Expression in Fibroblasts”

Ryusuke Yoshimi; Tsung-Hsien Chang; Hongsheng Wang; Toru Atsumi; Herbert C. Morse; Keiko Ozato

The tripartite motif (TRIM) family member, TRIM21, is an E3 ubiquitin ligase for IFN regulatory factor (IRF)3 and IRF8 that functions in both innate and acquired immunity. It is also an autoantigen known as Ro52/SS-A. The function of TRIM21 in vivo, however, has remained elusive. We generated Trim21−/− mice with the Trim21 gene replaced by an enhanced GFP (EGFP) reporter. EGFP expression analyses showed that Trim21 was widely expressed in many tissues, with the highest levels in immune cells. Studies of Trim21−/− embryonic fibroblasts demonstrated that TLR-mediated induction of proinflammatory cytokines, including IL-1β, IL-6, TNF-α, and CXCL10, was consistently up-regulated relative to wild-type cells. Reporter analyses demonstrated that TLR-mediated NF-κB activation was higher in Trim21−/− cells than in wild-type cells, most likely accounting for their enhanced cytokine expression. In contrast, functional analyses of immune cells from Trim21−/− mice revealed no abnormalities in their composition or function, even though ubiquitylation of IRF3 and IRF8 was impaired. These results suggested possible redundancies in activities mediated by TRIM21. In keeping with this concept, we found that a number of TRIM family members were up-regulated in Trim21−/− cells. Taken together, these findings demonstrate that TRIM21 plays a previously unrecognized role in the negative regulation of NF-κB-dependent proinflammatory cytokine responses, and suggest that multiple TRIM proteins contribute to the maintenance of functional equilibrium in inflammatory responses, in part through functional redundancy.


Journal of Immunology | 2011

Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7.

Qiming Liang; Hongying Deng; Xiaojuan Li; Xianfang Wu; Qiyi Tang; Tsung-Hsien Chang; Hongzhuang Peng; Frank J. Rauscher; Keiko Ozato; Fanxiu Zhu

IFN regulatory factor 7 (IRF7) is a potent transcription factor of type I IFNs and IFN-stimulated genes and is known as the master regulator of type I IFN-dependent immune responses. Because excessive responses could harm the host, IRF7 itself is delicately regulated at the transcriptional, translational, and posttranslational levels. Modification of IRF7 by small ubiquitin-related modifiers (SUMOs) has been shown to regulate IFN expression and antiviral responses negatively, but the specific E3 ligase needed for IRF7 SUMOylation has remained unknown. As reported in this article, we have identified the tripartite motif-containing protein 28 (TRIM28) as a binding partner of IRF7. We have demonstrated that TRIM28 also interacts with the SUMO E2 enzyme and increases SUMOylation of IRF7 both in vivo and in vitro, suggesting it acts as a SUMO E3 ligase of IRF7. Unlike the common SUMO E3 ligase, protein inhibitor of activated STAT1, the E3 activity of TRIM28 is specific to IRF7, because it has little effect on IRF7’s close relative IRF3. TRIM28 is therefore, so far as we know, the first IRF7-specific SUMO E3 reported. TRIM28-mediated SUMOylation of IRF7 is increased during viral infection, and SUMOylation of transcription factors usually results in transcriptional repression. Overexpression of TRIM28 therefore inhibits IRF7 transactivation activity, whereas knockdown of TRIM28 has the opposite effect and potentiates IFN production and antiviral responses. Collectively, our results suggest that TRIM28 is a specific SUMO E3 ligase and negative regulator of IRF7.


Journal of Virology | 2009

Ebolavirus VP35 Interacts with the Cytoplasmic Dynein Light Chain 8

Toru Kubota; Mayumi Matsuoka; Tsung-Hsien Chang; Mike Bray; Steven J.M. Jones; Masato Tashiro; Atsushi Kato; Keiko Ozato

ABSTRACT The viral protein VP35 of ebolavirus (EBOV) is implicated to have diverse roles in the viral life cycle. We employed a yeast two-hybrid screen to search for VP35 binding partners and identified the cytoplasmic dynein light chain (DLC8) as a protein that interacts with VP35. Mapping analysis unraveled a consensus motif, SQTQT, within VP35 through which VP35 binds to DLC8. The disruption of DLC8 binding does not affect the ability of VP35 to inhibit type I IFN production. Given that VP35 from various EBOV species interacts with DLC8, this interaction may have a role in regulating the EBOV life cycle.


Journal of Immunology | 2012

The Small Ubiquitin-like Modifier-Deconjugating Enzyme Sentrin-Specific Peptidase 1 Switches IFN Regulatory Factor 8 from a Repressor to an Activator during Macrophage Activation

Tsung-Hsien Chang; Songxiao Xu; Prafullakumar Tailor; Tomohiko Kanno; Keiko Ozato

Macrophages, when activated by IFN-γ and TLR signaling, elicit innate immune responses. IFN regulatory factor 8 (IRF8) is a transcription factor that facilitates macrophage activation and innate immunity. We show that, in resting macrophages, some IRF8 is conjugated to small ubiquitin-like modifiers (SUMO) 2/3 through the lysine residue 310. SUMO3-conjugated IRF8 failed to induce IL12p40 and other IRF8 target genes, consistent with SUMO-mediated transcriptional repression reported for other transcription factors. SUMO3-conjugated IRF8 showed reduced mobility in live nuclei and bound poorly to the IL12p40 gene. However, macrophage activation caused a sharp reduction in the amount of SUMOylated IRF8. This reduction coincided with the induction of a deSUMOylating enzyme, sentrin-specific peptidase 1 (SENP1), in activated macrophages. In transfection analysis, SENP1 removed SUMO3 from IRF8 and enhanced expression of IL12p40 and other target genes. Conversely, SENP1 knockdown repressed IRF8 target gene expression. In parallel with IRF8 deSUMOylation, macrophage activation led to the induction of proteins active in the SUMO pathway and caused a global shift in nuclear protein SUMOylation patterns. Together, the IRF8 SUMO conjugation/deconjugation switch is part of a larger transition in SUMO modifications that takes place upon macrophage activation, serving as a mechanism to trigger innate immune responses.


PLOS ONE | 2012

Dengue Virus Serotype 2 Blocks Extracellular Signal-Regulated Kinase and Nuclear Factor-κB Activation to Downregulate Cytokine Production

Tsung-Hsien Chang; Siang-Ru Chen; Chia-Yi Yu; You-Sheng Lin; Yao-Shen Chen; Toru Kubota; Mayumi Matsuoka; Yi-Ling Lin

Background Dengue virus (DENV) infection is the most common mosquito-borne viral disease threatening human health around the world. Type I interferon (IFN) and cytokine production are crucial in the innate immune system. We previously reported that DENV serotype 2 (DENV-2) induced low levels of interferon regulatory factor 3 and NF-κB activation, thus leading to reduced production of IFN-β in the early phase of infection. Here, we determined whether DENV infection not only hampers type I IFN activation but also cytokine production triggered by Toll-like receptor (TLR) signaling. Methodology/Principal Findings We used quantitative RT-PCR and found that only low levels of IFN-β and inflammatory cytokines such as interleukin 10 (IL-10), IL-12 and tumor necrosis factor α (TNFα) mRNA were detected in DENV-2–infected bone-marrow–derived dendritic cells. Furthermore, DENV-2 infection repressed cytokine production triggered by TLR signaling. To elucidate the molecular mechanisms underlying this suppression event, we measured NF-κB activation by p65 nuclear translocation and luciferase reporter assay and found that NF-κB activation triggered by TLR ligands was blocked by DENV-2 infection. As well, extracellular signal-regulated kinase (ERK) activity was suppressed by DENV-2 infection. Conclusions/Significance To downregulate the host innate immunity, DENV-2 by itself is a weak inducer of type I IFN and cytokines, furthermore DENV-2 can also block the TLR-triggered ERK–NF-κB activation and cytokine production.


PLOS ONE | 2014

Functionally distinct effects of the C-terminal regions of IKKε and TBK1 on type I IFN production.

Yuichiro Nakatsu; Mayumi Matsuoka; Tsung-Hsien Chang; Noriyuki Otsuki; Masahiro Noda; Hirokazu Kimura; Kouji Sakai; Hiroshi Kato; Makoto Takeda; Toru Kubota

Inhibitor of κB kinase ε (IKKε) and TANK binding kinase 1 (TBK1), so-called non-canonical IKKs or IKK-related kinases, are involved in the cellular innate immunity by inducing type I IFNs. Two kinases commonly phosphorylate transcription factors IRF3 and IRF7 in type I IFN production pathway. In contrast to TBK1, underlying mechanisms of IKKε activation and regions required for activation of downstream molecules are poorly understood. In this study, we investigated regions of IKKε required for the activation of type I IFN promoter specially, by focusing on the C-terminal region. To show the functional significance of the IKKε C-terminal region on type I IFN production, we employed various mutant forms of IKKε and compared to corresponding region of TBK1. We identified the specific regions and residues of IKKε involved in the activation of downstream signaling. Interestingly, corresponding region and residues are not required for activation of downstream signaling by TBK1. The results highlight the importance of the C-terminal region in the functional activity of IKKε in innate immune response and also the difference in activation mechanisms between IKKε and the closely related TBK1.


Journal of Immunology | 2015

Tripartite Motif (TRIM) 12c, a Mouse Homolog of TRIM5, Is a Ubiquitin Ligase That Stimulates Type I IFN and NF-κB Pathways along with TNFR-Associated Factor 6

Tsung-Hsien Chang; Ryusuke Yoshimi; Keiko Ozato

Tripartite motif (TRIM) protein TRIM5 of the primate species restricts replication of HIV and other retroviruses. Whereas primates have a single TRIM5 gene, the corresponding locus in the mouse has expanded during evolution, now containing more than eight related genes. Owing to the complexity of the genomic organization, a mouse homolog of TRIM5 has not been fully studied thus far. In the present study, we report that Trim12c (formerly Trim12-2) encodes a TRIM5-like protein with a ubiquitin ligase activity. Similar to the primate TRIM5, TRIM12c is expressed in the cytoplasm as a punctate structure and induced upon IFN and pathogen stimulation in macrophages and dendritic cells. We show that TRIM12c interacts with TRAF6, a key protein in the pathogen recognition receptor signaling, and reciprocally enhances their ubiquitination, leading to cooperative activation of IFN and NF-κB pathways. This study identifies TRIM12c as a mouse TRIM5 equivalent, critical for host innate immunity.

Collaboration


Dive into the Tsung-Hsien Chang's collaboration.

Top Co-Authors

Avatar

Keiko Ozato

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Toru Kubota

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mayumi Matsuoka

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Prafullakumar Tailor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Herbert C. Morse

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mike Bray

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Atsushi Kato

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Fanxiu Zhu

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Hongsheng Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hongying Deng

Florida State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge