Tulika Gupta
Indian Institute of Technology Bombay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tulika Gupta.
Inorganic Chemistry | 2014
Saurabh Kumar Singh; Tulika Gupta; Gopalan Rajaraman
Magnetic anisotropy is a key component in the design of single-molecule magnets (SMMs) possessing a large barrier height for magnetization reversal. Lanthanide-based SMMs are the most promising candidates in this arena as they offer a large magnetic anisotropy due to the presence of strong spin-orbit coupling. Among lanthanides, Er(III) complexes are gaining attention in the area of SMMs, because of their intriguing magnetic properties and attractive blocking temperatures. Here, we have undertaken detailed ab initio calculations on four structurally diverse Er(III) SMMs to shed light on how the magnetic anisotropy is influenced by the role of symmetry and structural distortions. The employed CASSCF+RASSI calculations have offered rationale for the observed differences in the estimated Ueff values for the studied complexes and also offered hints to the mechanism of magnetic relaxation. The differences in the mechanism of magnetic relaxations are further analyzed based on the Er-ligand interactions, which is obtained by analyzing the charges, densities, luminescent behavior and the frontier molecular orbitals. Our calculations, for the first time, have highlighted the importance of high symmetry environment and ligand donor strength in obtaining large Ueff values for the Er(III) complexes. We have examined these possibilities by modeling several structures with variable coordination numbers and point group symmetry. These results signify the need of a detailed understanding on the shape of the anisotropy and the point group symmetry in order to achieve large Ueff values in Er(III) single-ion magnets.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Michael L. Baker; Grigore A. Timco; Stergios Piligkos; Jennifer S. Mathieson; Hannu Mutka; Floriana Tuna; Piotr Kozlowski; Michał Antkowiak; T. Guidi; Tulika Gupta; Harapriya Rath; Robert J. Woolfson; G. Kamieniarz; Robin G. Pritchard; Høgni Weihe; Leroy Cronin; Gopalan Rajaraman; David Collison; Eric J. L. McInnes; Richard E. P. Winpenny
The term “frustration” in the context of magnetism was originally used by P. W. Anderson and quickly adopted for application to the description of spin glasses and later to very special lattice types, such as the kagomé. The original use of the term was to describe systems with competing antiferromagnetic interactions and is important in current condensed matter physics in areas such as the description of emergent magnetic monopoles in spin ice. Within molecular magnetism, at least two very different definitions of frustration are used. Here we report the synthesis and characterization of unusual nine-metal rings, using magnetic measurements and inelastic neutron scattering, supported by density functional theory calculations. These compounds show different electronic/magnetic structures caused by frustration, and the findings lead us to propose a classification for frustration within molecular magnets that encompasses and clarifies all previous definitions.
Chemistry: A European Journal | 2014
Saurabh Kumar Singh; Tulika Gupta; Prashi Badkur; Gopalan Rajaraman
Mononuclear Ni(II) complexes are particularly attractive in the area of single-molecule magnets as the axial zero-field splitting (D) for the Ni(II) complexes is in the range of -200 to +200 cm(-1) . Despite this advantage, very little is known on the origin of anisotropy across various coordination ligands, coordination numbers, and particularly what factors influence the D parameter in these complexes. To answer some of these questions, herein we have undertaken a detailed study of a series of mononuclear Ni(II) complexes with ab initio calculations. Our results demonstrate that three prominent spin-conserved low-lying d-d transitions contribute significantly to the D value. Variation in the sign and the magnitude of D values are found to correlate to the specific structural distortions. Apart from the metal-ligand bond lengths, two different parameters, namely, Δα and Δβ, which are correlated to the cis angles present in the coordination environment, are found to significantly influence the axial D values. Developed magneto-structural D correlations suggest that the D values can be enhanced significantly by fine tuning the structural distortion in the coordination environment. Calculations performed on a series of Ni(II) models with coordination numbers two to six unfold an interesting observation-the D parameter increases significantly upon a reduction in coordination number compared with a reference octahedral coordination. Besides, if high symmetry is maintained, even larger coordination numbers yield large D values.
Journal of Chemical Sciences | 2014
Tulika Gupta; Gopalan Rajaraman
AbstractAb initio CASSCF + RASSI-SO investigations on a series of lanthanide complexes [LnIII = Dy(1), Tb(2), Ce(3), Nd(4), Pr(5) and Sm(6)] have been undertaken and in selected cases (for 1, 2, 3 and 4) coordination number (C.N.) around the LnIII ion has been gradually varied to ascertain the effect of C.N. on the magnetic anisotropy. Our calculations reveal that complex 3 possesses the highest barrier height for reorientation of magnetisation (Ueff) and predict that 3 is likely to exhibit Single Molecule Magnet (SMM) behaviour. Complex 5 on the other hand is predicted to preclude any SMM behaviour as there is no intrinsic barrier for reorientation of magnetization. Ground state anisotropy of all the complexes show mixed behaviour ranging from pure Ising type to fully rhombic behaviour. Coordination number around the lanthanide ion is found to alter the magnetic behaviour of all the lanthanide complexes studied and this is contrary to the general belief that the lanthanide ions are inert and exert small ligand field interaction. High symmetric low-coordinate LnIII complexes are found to yield large Ueff values and thus should be the natural targets for achieving very large blocking temperatures. Graphical AbstractTOC content: We have undertaken detailed ab-initio studies on {LnIII(NO3)6}3- [LnIII=Dy(1),Tb(2),Ce(3),Nd(4),Pr(5) and Sm(6)] complexes to gain insight into the effective barrier height for relaxation of magnetization and mechanism underlying this barrier. Additionally, we have also probed the effect of co-ordination number on magnetic anisotropy in these complexes.
Journal of Chemical Sciences | 2016
Tulika Gupta; Gunasekaran Velmurugan; Thayalan Rajeshkumar; Gopalan Rajaraman
AbstractAb initio CASSCF + RASSI-SO + SINGLE_ANISO and DFT based NBO and QTAIM investigations were carried out on a series of trigonal prismatic M(BcMe)3 (M = Tb(1), Dy(2), Ho(3), Er(4), [BcMe]−= dihydrobis(methylimidazolyl)borate) and M(BpMe)3 (M = Tb(1a), Dy(2a), Ho(3a), Er(4a) [BpMe]−= dihydrobis(methypyrazolyl)borate) complexes to ascertain the anisotropic variations of these two ligand field environments and the influence of Lanthanide-ligand bonding on the magnetic anisotropy. Among all the complexes studied, only 1 and 2 show large Ucal (computed energy barrier for magnetization reorientation) values of 256.4 and 268.5 cm−1, respectively and this is in accordance with experiment. Experimentally only frequency dependent χ” tails are observed for complex 1a and our calculation predicts a large Ucalof 229.4 cm−1 for this molecule. Besides these, none of the complexes (3, 4, 2a, 3a and 4a) computed to possess large energy barrier and this is affirmed by the experiments. These observed differences in the magnetic properties are correlated to the Ln-Ligand bonding. Our calculations transpire comparatively improved Single-Ion Magnet (SIM) behaviour for carbene analogues due to the more axially compressed trigonal prismatic ligand environment. Furthermore, our detailed Mulliken charge, spin density, NBO and Wiberg bond analysis implied stronger Ln...H–BH agostic interaction for pyrazole analogues. Further, QTAIM analysis reveals the physical nature of coordination, covalent, and fine details of the agostic interactions in all the eight complexes studied. Quite interestingly, for the first time, using the Laplacian density, we are able to quantify the prolate and oblate nature of the electron clouds in lanthanides and this is expected to have a far reaching outcome beyond the examples studied. Graphical AbstractCalculations were carried out on a series on Ln(BcMe)3 and Ln(BpMe)3 (Ln = Tb, Dy, Ho, Er) complexes to ascertain the anisotropic variations of two ligand field environments and the influence of Lanthanide-ligand bonding on the magnetic anisotropy. Using the Laplacian density, we are able to quantify the prolate and oblate nature of the electron clouds in lanthanides.
Inorganic Chemistry | 2017
Ismael F. Díaz-Ortega; Juan Manuel Herrera; Tulika Gupta; Gopalan Rajaraman; Hiroyuki Nojiri; Enrique Colacio
A series of trinuclear Ln3 complexes (LnIII = Yb (1), Er (2), Dy (3) and Gd (4)) were prepared from the tris-chelate bidentate ligand 1,4,5,8,9,12-hexaazatriphenylene (HAT). 1 and 2 exhibited field-induced single-molecule-magnet (SMM) behavior with estimated Ueff values of 21.30 and 13.86 K, respectively. Complex 3 behaved as a SMM even at zero field, and two different thermally assisted relaxation processes were detected with Ueff values of 29.6 K (fast relaxation process, FR) and 69 K (slow relaxation process, SR) due to the existence of two magnetically different DyIII centers in the molecule. Ab initio studies reveal that all the Dy3+ centers have almost an Ising ground state. The local anisotropy axes are not coplanar but form angles with the Dy3 plane in the range 58-78°. The magnetic interaction between the anisotropic Dy3+ ions is antiferromagnetic in nature and very weak in magnitude. However, due to the extreme feebleness of the magnetic interaction with regard to the local excitation energies, the magnetization blockade is most probably of single-ion origin. Calculations support the existence of two relaxation processes, which take place through the first excited state following an Orbach/Raman mechanism. Finally, for complex 4, the magnetocaloric effect was simulated using the magnetic parameters extracted from the fit of the magnetization and susceptibility data and demonstrated that the simulated -ΔSm values were almost coincident with those extracted from the integration of the field dependence of the magnetization. The simulated MCE value at 2 K and 5 T (20.46 J kg-1 K-1) makes complex 4 an attractive candidate for cryogenic magnetization.
Inorganic Chemistry | 2018
Ismael F. Díaz-Ortega; Juan Manuel Herrera; Daniel Aravena; Eliseo Ruiz; Tulika Gupta; Gopalan Rajaraman; Hiroyuki Nojiri; Enrique Colacio
Herein we report a dinuclear [(μ-mbpymNO){(tmh)3Dy}2] (1) single-molecule magnet (SMM) showing two nonequivalent DyIII centers, which was rationally prepared from the reaction of Dy(tmh)3 moieties (tmh = 2,2,6,6-tetramethyl-3,5-heptanedionate) and the asymmetric bis-bidentate bridging ligand 4-methylbipyrimidine (mbpymNO). Depending on whether the DyIII ions coordinate to the N^O or N^N bidentate donor sets, the DyIII sites present a NO7 ( D2 d geometry) or N2O6 ( D4 d) coordination sphere. As a consequence, two different thermally activated magnetic relaxation processes are observed with anisotropy barriers of 47.8 and 54.7 K. Ab initio calculations confirm the existence of two different relaxation phenomena and allow one to assign the 47.8 and 54.7 K energy barriers to the Dy(N2O6) and Dy(NO7) sites, respectively. Two mononuclear complexes, [Dy(tta)3(mbpymNO)] (2) and [Dy(tmh)3(phenNO)] (3), have also been prepared for comparative purposes. In both cases, the DyIII center shows a NO7 coordination sphere and SMM behavior is observed with Ueff values of 71.5 K (2) and 120.7 K (3). In all three cases, ab initio calculations indicate that relaxation of the magnetization takes place mainly via the first excited-state Kramers doublet through Orbach, Raman, and thermally assisted quantum-tunnelling mechanisms. Pulse magnetization measurements reveal that the dinuclear and mononuclear complexes exhibit hysteresis loops with double- and single-step structures, respectively, thus supporting their SMM behavior.
Archive | 2018
Tulika Gupta; Mukesh Kumar Singh; Gopalan Rajaraman
In this book chapter, we have reviewed recent trends in employing ab initio calculations based on complete active space self-consistent field (CASSCF)/restricted active space spin interaction with spin–orbit coupling (RASSI-SO) procedure to interpret, rationalize and predict suitable lanthanide based molecular magnets. We begin with the general introduction on the methods used followed by various pragmatic instances where ab initio calculations have been employed to understand the magnetic anisotropy in lanthanide based single-ion magnets (SIMs). While a detailed section is dedicated to the mononuclear DyIII SIMs, we have also covered other lanthanide SIMs briefly. Particularly, we have classified various SIMs based on the observed crystal-field splitting between ground and first excited states and this likely to shed light on the most important issue of suitable geometries that could yield high blocking temperature SIMs.
Chemical Communications | 2015
Shefali Vaidya; Apoorva Upadhyay; Saurabh Kumar Singh; Tulika Gupta; Subrata Tewary; Stuart K. Langley; James P. S. Walsh; Keith S. Murray; Gopalan Rajaraman; Maheswaran Shanmugam
Chemical Communications | 2014
Saurabh Kumar Singh; Tulika Gupta; Maheswaran Shanmugam; Gopalan Rajaraman