Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tyler B. Hughes is active.

Publication


Featured researches published by Tyler B. Hughes.


Nanotoxicology | 2012

Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing

Ruhung Wang; Tyler B. Hughes; Simon J. Beck; Samee Vakil; Synyoung Li; Paul Pantano; Rockford K. Draper

Abstract Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one polypropylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility that poloxamer degradation products are toxic to mammalian cells has not been well studied. We report here that aqueous solutions of poloxamer 188 (Pluronic® F-68) and poloxamer 407 (Pluronic® F-127) sonicated in the presence or absence of multi-walled carbon nanotubes (MWNTs) can became highly toxic to cultured cells. Moreover, toxicity correlated with the sonolytic degradation of the polymers. These findings suggest that caution should be used in interpreting the results of nanotoxicity studies where the potential sonolytic degradation of dispersants was not controlled.


ACS central science | 2015

Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network.

Tyler B. Hughes; Grover P. Miller; S. Joshua Swamidass

Drug toxicity is frequently caused by electrophilic reactive metabolites that covalently bind to proteins. Epoxides comprise a large class of three-membered cyclic ethers. These molecules are electrophilic and typically highly reactive due to ring tension and polarized carbon–oxygen bonds. Epoxides are metabolites often formed by cytochromes P450 acting on aromatic or double bonds. The specific location on a molecule that undergoes epoxidation is its site of epoxidation (SOE). Identifying a molecule’s SOE can aid in interpreting adverse events related to reactive metabolites and direct modification to prevent epoxidation for safer drugs. This study utilized a database of 702 epoxidation reactions to build a model that accurately predicted sites of epoxidation. The foundation for this model was an algorithm originally designed to model sites of cytochromes P450 metabolism (called XenoSite) that was recently applied to model the intrinsic reactivity of diverse molecules with glutathione. This modeling algorithm systematically and quantitatively summarizes the knowledge from hundreds of epoxidation reactions with a deep convolution network. This network makes predictions at both an atom and molecule level. The final epoxidation model constructed with this approach identified SOEs with 94.9% area under the curve (AUC) performance and separated epoxidized and non-epoxidized molecules with 79.3% AUC. Moreover, within epoxidized molecules, the model separated aromatic or double bond SOEs from all other aromatic or double bonds with AUCs of 92.5% and 95.1%, respectively. Finally, the model separated SOEs from sites of sp2 hydroxylation with 83.2% AUC. Our model is the first of its kind and may be useful for the development of safer drugs. The epoxidation model is available at http://swami.wustl.edu/xenosite.


Chemical Research in Toxicology | 2015

Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione.

Tyler B. Hughes; Grover P. Miller; S. Joshua Swamidass

Drug toxicity is often caused by electrophilic reactive metabolites that covalently bind to proteins. Consequently, the quantitative strength of a molecules reactivity with glutathione (GSH) is a frequently used indicator of its toxicity. Through cysteine, GSH (and proteins) scavenges reactive molecules to form conjugates in the body. GSH conjugates to specific atoms in reactive molecules: their sites of reactivity. The value of knowing a molecules sites of reactivity is unexplored in the literature. This study tests the value of site of reactivity data that identifies the atoms within 1213 reactive molecules that conjugate to GSH and builds models to predict molecular reactivity with glutathione. An algorithm originally written to model sites of cytochrome P450 metabolism (called XenoSite) finds clear patterns in molecular structure that identify sites of reactivity within reactive molecules with 90.8% accuracy and separate reactive and unreactive molecules with 80.6% accuracy. Furthermore, the model output strongly correlates with quantitative GSH reactivity data in chemically diverse, external data sets. Site of reactivity data is nearly unstudied in the literature prior to our efforts, yet it contains a strong signal for reactivity that can be utilized to more accurately predict molecule reactivity and, eventually, toxicity.


Bioinformatics | 2015

XenoSite server: a web-available site of metabolism prediction tool

Matthew Matlock; Tyler B. Hughes; Sanjay Joshua Swamidass

UNLABELLED Cytochrome P450 enzymes (P450s) are metabolic enzymes that process the majority of FDA-approved, small-molecule drugs. Understanding how these enzymes modify molecule structure is key to the development of safe, effective drugs. XenoSite server is an online implementation of the XenoSite, a recently published computational model for P450 metabolism. XenoSite predicts which atomic sites of a molecule--sites of metabolism (SOMs)--are modified by P450s. XenoSite server accepts input in common chemical file formats including SDF and SMILES and provides tools for visualizing the likelihood that each atomic site is a site of metabolism for a variety of important P450s, as well as a flat file download of SOM predictions. AVAILABILITY AND IMPLEMENTATION XenoSite server is available at http://swami.wustl.edu/xenosite.


ACS central science | 2016

Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network

Tyler B. Hughes; Na Le Dang; Grover P. Miller; S. Joshua Swamidass

Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network—the XenoSite reactivity model—using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the model’s performances significantly outperformed reactivity indices derived from quantum simulations that are reported in the literature. Moreover, we developed and applied a selectivity score to assess preferential reactions with the macromolecules as opposed to the common screening traps. For the entire data set of 2803 molecules, this approach yielded totals of 257 (9.2%) and 227 (8.1%) molecules predicted to be reactive only with DNA and protein, respectively, and hence those that would be missed by standard reactivity screening experiments. Site of reactivity data is an underutilized resource that can be used to not only predict if molecules are reactive, but also show where they might be modified to reduce toxicity while retaining efficacy. The XenoSite reactivity model is available at http://swami.wustl.edu/xenosite/p/reactivity.


Bioinformatics | 2015

Extending P450 site-of-metabolism models with region-resolution data

Jed Zaretzki; Michael R. Browning; Tyler B. Hughes; S. Joshua Swamidass

MOTIVATION Cytochrome P450s are a family of enzymes responsible for the metabolism of approximately 90% of FDA-approved drugs. Medicinal chemists often want to know which atoms of a molecule-its metabolized sites-are oxidized by Cytochrome P450s in order to modify their metabolism. Consequently, there are several methods that use literature-derived, atom-resolution data to train models that can predict a molecules sites of metabolism. There is, however, much more data available at a lower resolution, where the exact site of metabolism is not known, but the region of the molecule that is oxidized is known. Until now, no site-of-metabolism models made use of region-resolution data. RESULTS Here, we describe XenoSite-Region, the first reported method for training site-of-metabolism models with region-resolution data. Our approach uses the Expectation Maximization algorithm to train a site-of-metabolism model. Region-resolution metabolism data was simulated from a large site-of-metabolism dataset, containing 2000 molecules with 3400 metabolized and 30 000 un-metabolized sites and covering nine Cytochrome P450 isozymes. When training on the same molecules (but with only region-level information), we find that this approach yields models almost as accurate as models trained with atom-resolution data. Moreover, we find that atom-resolution trained models are more accurate when also trained with region-resolution data from additional molecules. Our approach, therefore, opens up a way to extend the applicable domain of site-of-metabolism models into larger regions of chemical space. This meets a critical need in drug development by tapping into underutilized data commonly available in most large drug companies. AVAILABILITY AND IMPLEMENTATION The algorithm, data and a web server are available at http://swami.wustl.edu/xregion.


Chemical Research in Toxicology | 2017

Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism

Tyler B. Hughes; S. Joshua Swamidass

Many adverse drug reactions are thought to be caused by electrophilically reactive drug metabolites that conjugate to nucleophilic sites within DNA and proteins, causing cancer or toxic immune responses. Quinone species, including quinone-imines, quinone-methides, and imine-methides, are electrophilic Michael acceptors that are often highly reactive and comprise over 40% of all known reactive metabolites. Quinone metabolites are created by cytochromes P450 and peroxidases. For example, cytochromes P450 oxidize acetaminophen to N-acetyl-p-benzoquinone imine, which is electrophilically reactive and covalently binds to nucleophilic sites within proteins. This reactive quinone metabolite elicits a toxic immune response when acetaminophen exceeds a safe dose. Using a deep learning approach, this study reports the first published method for predicting quinone formation: the formation of a quinone species by metabolic oxidation. We model both one- and two-step quinone formation, enabling accurate quinone formation predictions in nonobvious cases. We predict atom pairs that form quinones with an AUC accuracy of 97.6%, and we identify molecules that form quinones with 88.2% AUC. By modeling the formation of quinones, one of the most common types of reactive metabolites, our method provides a rapid screening tool for a key drug toxicity risk. The XenoSite quinone formation model is available at http://swami.wustl.edu/xenosite/p/quinone .


Chemical Research in Toxicology | 2017

Computational Approach to Structural Alerts: Furans, Phenols, Nitroaromatics, and Thiophenes

Na Le Dang; Tyler B. Hughes; Grover P. Miller; S. Joshua Swamidass

Structural alerts are commonly used in drug discovery to identify molecules likely to form reactive metabolites and thereby become toxic. Unfortunately, as useful as structural alerts are, they do not effectively model if, when, and why metabolism renders safe molecules toxic. Toxicity due to a specific structural alert is highly conditional, depending on the metabolism of the alert, the reactivity of its metabolites, dosage, and competing detoxification pathways. A systems approach, which explicitly models these pathways, could more effectively assess the toxicity risk of drug candidates. In this study, we demonstrated that mathematical models of P450 metabolism can predict the context-specific probability that a structural alert will be bioactivated in a given molecule. This study focuses on the furan, phenol, nitroaromatic, and thiophene alerts. Each of these structural alerts can produce reactive metabolites through certain metabolic pathways but not always. We tested whether our metabolism modeling approach, XenoSite, can predict when a given molecules alerts will be bioactivated. Specifically, we used models of epoxidation, quinone formation, reduction, and sulfur-oxidation to predict the bioactivation of furan-, phenol-, nitroaromatic-, and thiophene-containing drugs. Our models separated bioactivated and not-bioactivated furan-, phenol-, nitroaromatic-, and thiophene-containing drugs with AUC performances of 100%, 73%, 93%, and 88%, respectively. Metabolism models accurately predict whether alerts are bioactivated and thus serve as a practical approach to improve the interpretability and usefulness of structural alerts. We expect that this same computational approach can be extended to most other structural alerts and later integrated into toxicity risk models. This advance is one necessary step toward our long-term goal of building comprehensive metabolic models of bioactivation and detoxification to guide assessment and design of new therapeutic molecules.


Chemical Research in Toxicology | 2018

Computationally Assessing the Bioactivation of Drugs by N-Dealkylation

Na Le Dang; Tyler B. Hughes; Grover P. Miller; S. Joshua Swamidass

Cytochromes P450 (CYPs) oxidize alkylated amines commonly found in drugs and other biologically active molecules, cleaving them into an amine and an aldehyde. Metabolic studies usually neglect to report or investigate aldehydes, even though they can be toxic. It is assumed that they are efficiently detoxified into carboxylic acids and alcohols. Nevertheless, some aldehydes are reactive and escape detoxification pathways to cause adverse events by forming DNA and protein adducts. Herein, we modeled N-dealkylations that produce both amine and aldehyde metabolites and then predicted the reactivity of the aldehyde. This model used a deep learning approach previously developed by our group to predict other types of drug metabolism. In this study, we trained the model to predict N-dealkylation by human liver microsomes (HLM), finding that including isozyme-specific metabolism data alongside HLM data significantly improved results. The final HLM model accurately predicted the site of N-dealkylation within metabolized substrates (97% top-two and 94% area under the ROC curve). Next, we combined the metabolism, metabolite structure prediction, and previously published reactivity models into a bioactivation model. This combined model predicted the structure of the most likely reactive metabolite of a small validation set of drug-like molecules known to be bioactivated by N-dealkylation. Applying this model to approved and withdrawn medicines, we found that aldehyde metabolites produced from N-dealkylation may explain the hepatotoxicity of several drugs: indinavir, piperacillin, verapamil, and ziprasidone. Our results suggest that N-dealkylation may be an under-appreciated bioactivation pathway, especially in clinical contexts where aldehyde detoxification pathways are inhibited. Moreover, this is the first report of a bioactivation model constructed by combining a metabolism and reactivity model. These results raise hope that more comprehensive models of bioactivation are possible. The model developed in this study is available at http://swami.wustl.edu/xenosite/ .


Nanotoxicology | 2018

Quantitation of cell-associated carbon nanotubes: selective binding and accumulation of carboxylated carbon nanotubes by macrophages

Ruhung Wang; Michael Lee; Karina Kinghorn; Tyler B. Hughes; Ishwar Chuckaree; Rishabh Lohray; Erik Chow; Paul Pantano; Rockford K. Draper

Abstract To understand the influence of carboxylation on the interaction of carbon nanotubes with cells, the amount of pristine multi-walled carbon nanotubes (P-MWNTs) or carboxylated multi-walled carbon nanotubes (C-MWNTs) coated with Pluronic® F-108 that were accumulated by macrophages was measured by quantifying CNTs extracted from cells. Mouse RAW 264.7 macrophages and differentiated human THP-1 (dTHP-1) macrophages accumulated 80–100 times more C-MWNTs than P-MWNTs during a 24-h exposure at 37 °C. The accumulation of C-MWNTs by RAW 264.7 cells was not lethal; however, phagocytosis was impaired as subsequent uptake of polystyrene beads was reduced after a 20-h exposure to C-MWNTs. The selective accumulation of C-MWNTs suggested that there might be receptors on macrophages that bind C-MWNTs. The binding of C-MWNTs to macrophages was measured as a function of concentration at 4 °C in the absence of serum to minimize the potential interference by serum proteins or temperature-dependent uptake processes. The result was that the cells bound 8.7 times more C-MWNTs than P-MWNTs, consistent with the selective accumulation of C-MWNTs at 37 °C. In addition, serum strongly antagonized the binding of C-MWTS to macrophages, suggesting that serum contained inhibitors of binding. Moreover, inhibitors of class A scavenger receptor (SR-As) reduced the binding of C-MWNTs by about 50%, suggesting that SR-As contribute to the binding and endocytosis of C-MWNTs in macrophages but that other receptors may also be involved. Altogether, the evidence supports the hypothesis that macrophages contain binding sites selective for C-MWNTs that facilitate the high accumulation of C-MWNTs compared to P-MWNTs.

Collaboration


Dive into the Tyler B. Hughes's collaboration.

Top Co-Authors

Avatar

S. Joshua Swamidass

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Grover P. Miller

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Na Le Dang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Matthew Matlock

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Paul Pantano

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Rockford K. Draper

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Ruhung Wang

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Amanda F. Cashen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dustyn A. Barnette

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge