Uhram Song
Jeju National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uhram Song.
Ecotoxicology and Environmental Safety | 2013
Uhram Song; Heeju Jun; Bruce Waldman; Jinkyu Roh; Younghun Kim; Jongheop Yi; Eun Ju Lee
Engineered nanoparticles (NPs), increasingly used in industry, enter and migrate through biological ecosystems. NPs may create some acute toxicity, but their overall effects on living organisms remain largely unknown. In particular, the behavior of NPs in natural conditions and their consequent ecological effects are still poorly understood. In this study, we developed methods to test the phytotoxicity of two distinctly different NPs, one aerosol (nano-TiO2), and the other colloidal silver (AgNP), by specifically considering their tendencies to agglomerate and form precipitates. First we examined effects of these NPs on germination and root elongation. While exposure to neither of these NPs resulted in acute toxicity on germination, silver NPs caused significantly decreased root elongation at every concentration we tested. We found that the hydrodynamic diameters of AgNPs were much smaller than those of nano-TiO2, which induced higher uptake and phytotoxicity. Based on the agglomeration behavior of the NPs, greenhouse trials were run using commercial soil, for nano-TiO2, and Hoaglands solution, for AgNP. Phytotoxicity of silver NPs in the mature plants was demonstrated by lower chlorophyll contents, higher superoxide dismutase activity and less fruit productivity, while nano-TiO2 resulted in higher superoxide dismutase activity at the highest concentration (5000mg/kg). Both nano-TiO2 and AgNPs were taken up into plant stems, leaves and fruits. Our results suggest that further studies of the ecological effects of nanoparticles and steps to mitigate appropriate management strategies are required.
Biological Trace Element Research | 2013
Uhram Song; Minjoo Shin; Gisuk Lee; Jinkyu Roh; Younghun Kim; Eun Ju Lee
Titanium dioxide nanoparticles (nano-TiO2) are manufactured and used worldwide in large quantities. However, phytotoxicity research on nano-TiO2 has yielded confusing results, ranging from strong toxicity to positive effects. Therefore, in this research, the effects of nano-TiO2 on the germination and root elongation of seed and seedlings were studied. Additionally, the uptake and physiological responses of mature plants were investigated. Physical chemistry data were analyzed to assess the availability of nano-TiO2. Finally, a hydroponic system designed to overcome nano-TiO2 precipitation was used to reproduce the environmental conditions of actual fields. Nano-TiO2 did not have any effect on seed germination or on most of the plant species tested. Nano-TiO2 had positive effects on root elongation in some species. No physiological differences in enzyme activities or chlorophyll content were detected, even though the plants absorbed nano-TiO2. Physical chemistry data showed that nano-TiO2 agglomerated rapidly and formed particles with much bigger hydrodynamic diameters, even in distilled water and especially in a hydroponic system. Furthermore, agglomerated nano-TiO2 formed precipitates; this would be more severe in an actual field. Consequently, nano-TiO2 would not be also readily available to plants and would not cause any significant effects on plants. Our results and other reports suggest that titanium itself is not phytotoxic, even though plants absorb titanium. In conclusion, nano-TiO2 is not toxic to the three plant species, in vitro or in situ.
Journal of Plant Biology | 2010
Uhram Song; Eun Ju Lee
Composting is one of the most appropriate methods to recycle sewage sludge. Sewage sludge compost is a suitable solution for improving the quality of barren soil at landfill. Therefore, it is important to investigate the effects of sewage sludge compost on plants. Different compost application methods (mixing and scattering over reclaimed soil) on sawtooth oak (Quercus acutissima) and Japanese red pine (Pinus densiflora) have been tested. The application of sewage sludge compost markedly increased soil moisture and nitrogen content. Compost treatments resulted in significant increases in both plant height and biomass as compared to controls. Compost treatments led to a significant increase in the N content of plant leaves. Compost treatments resulted in significant increases in the chlorophyll content and photosynthetic rates of the plants. The scattering of compost over reclaimed soil (compost 2) resulted in lower total antioxidant activity and superoxide dismutase activity than mixing the compost with the reclaimed soil (compost 1), or in the control treatment. Since the growth rates, N content, and photosynthetic rates in compost 2 treatment were not markedly different from compost 1 treatment, it (compost 2) would be a better application method from both an ecological and economic perspective.
Journal of Plant Biology | 2012
Uhram Song; Hun Park; Eun Ju Lee
The ability of the water fern Azolla japonica to remediate phosphorus (P), nitrogen (N), and iron (Fe) contamination, and its physiological responses to three common sources of water pollution (landfill leachate, swine lagoon sewage, and fish farm sewage) and standard solution were investigated. The biomass, water content, and chlorophyll content of Azolla japonica in each solution were measured, and the concentrations and accumulation rates of polluting elements in the solutions were determined. A. japonica showed over eight-fold increase in biomass within only 20 d in every solution except in swine lagoon sewage, extremely high in N concentration. Consistent chlorophyll and water contents of the plant in most solutions showed that A. japonica can adapt to highly concentrated solutions. N, P, and Fe concentrations of the solutions decreased significantly within the 20 d. In most treatments, A. japonica showed high N accumulation and also showed total uptake of P and Fe from the solutions. In reference to this result, using this species as a phytoremediator plant would have additional benefits of helping maintaining endangered populations of A. japonica. Therefore, the plant’s fast growth, good element remediation efficiency, and conservation needs makes A. japonica a suitable plant species for pollution remediation.
International Journal of Systematic and Evolutionary Microbiology | 2015
Hyeon-Woo Koh; Hye Seon Song; Uhram Song; Kyung June Yim; Seong Woon Roh; Soo-Je Park
An extremely halophilic archaeal strain, halo-7T, was isolated from brine sediment of the Gomso solar saltern, Republic of Korea. Cells of strain halo-7T were pleomorphic, stained Gram-negative, lysed in distilled water and formed red-pigmented colonies. Strain halo-7T grew in the range of 25-45°C (optimum 37-40°C), pH 6.5-9.5 (optimum pH 7.0-8.0), 15-30% (w/v) NaCl (optimum, 20-25%), and 0.05-0.5 M MgCl2 (optimum 0.1-0.3 M). The minimal NaCl concentration to prevent cell lysis of strain halo-7T was 10% (w/v). The major polar lipids of the isolate were phosphatidylglycerol, phosphatidylglycerolphosphate methyl ester, an unidentified phospholipid, an unidentified lipid, and two unidentified glycolipids. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain halo-7T is closely related to the members of the genus Halolamina, Halolamina salina WSY15-H3T (98.7% 16S rRNA gene sequence similarity), Halolamina pelagica TBN21T (98.2%) and Halolamina rubra CBA1107T (97.4%). The genomic DNA G+C content determined for strain halo-7T (68.0 mol%) was slightly higher than those of H. salina JCM 18549T and H. rubra CBA1107T. DNA-DNA hybridization values between strain halo-7T and reference strains were < 25%. Based on phenotypic, chemotaxonomic and phylogenetic properties, we describe a novel species of the genus Halolamina, represented by strain halo-7T, for which we propose the name Halolamina sediminis sp. nov. The type strain is halo-7T ( = JCM 30187T = CECT 8739T).
Environmental Management | 2014
Uhram Song; Saeromi Mun; Bruce Waldman; Eun Ju Lee
Abstract Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.
Journal of Environmental Management | 2016
Uhram Song; Dae Won Kim; Bruce Waldman; Eun Ju Lee
We examined the potential of Azolla japonica as a remediating plant for leachate channels and post-accumulation use as fertilizer for landfill slope. The harvested biomass of Azolla after one month grown in leachate was 254% that of the initial biomass and the predicted annual harvestable biomass of Azolla using a growth model was 32 times that of the initial biomass. Na, Fe, Mn, Mg, and P were accumulated in Azolla at very high concentrations. Such rapid increase of biomass and high accumulation rates suggest that this plant could be an excellent remediating plant. The post-harvest use of Azolla as compost was studied for the management and use of phytoaccumulating Azolla. Metal contents of Azolla compost were below permissible limits for co-composting material. Nitrogen, organic matter, P, and Mg content of the Azolla compost improved the soil condition of the landfill and enhanced ecophysiological responses of the plants. The application of Azolla compost can improve management of sanitary landfills, including the restoration of vegetation. Considering its ease of harvesting, high accumulation rates, harvestable biomass and suitability for composting, Azolla can provide a suitable solution for sustainable management of leachate channels and landfill slopes.
International Journal of Phytoremediation | 2017
Hun Park; Uhram Song
ABSTRACT Although Azolla species are among the most promising plants for use in phytoremediation, more studies on their growth and nitrogen (N) uptake along the N gradients of growing media are required. In this study, N concentration-dependent growth in growing media and phosphorus (P) and N accumulation by Azolla japonica were studied by estimating direct N uptake from media by molybdenum-iron proteins. The doubling time of A. japonica was less than a week, regardless of the N concentration (0, 5, and 25 mg N/L) present in the growth media, indicating that this plant is suitable for remediation. Plants showed a high uptake of P, probably via plant-bacteria symbiosis, indicating their potential for effective P remediation. A. japonica also showed more than 4% N content regardless of the treatment and accumulated more than 40 mg of N per microcosm in 3 weeks. iron and molybdenum levels in plants were strongly associated with N fixation, and N uptake from media was estimated to be more than 25 mg per microcosm in 3 weeks, indicating that A. japonica has N remediation potential. As A. japonica is a rapidly growing plant, capable of efficient P and N remediation, it has great potential for use in phytoremediation of nutrient-enriched waters such as agricultural or urban wastewater and eutrophicated aquatic ecosystems.
Journal of Environmental Sciences-china | 2012
Ki-Hoon Kim; Nae-Kyu Kang; Uhram Song; Eun Ju Lee
Salicornia europaea (glasswort) is succulent, annual, halophytic plant mainly distributed throughout reclaimed land or salt marsh. It has strong tolerance to salt so that it plays the part of the pioneer species in the first succession. According to domestic and foreign studies, S. europaea contains plenty of minerals and antioxidant in the body. Since people take note of an availableness of this plant as health diet, the natural growth sites are threatened. In addition to development of salt marsh and sea shore, imprudent harvest has a bad effect to S. europaea population maintenance. To seek ways to preserve the population of this plant, we carried out the continuity of seed germination and restoration test. Seokmo Island, Daebu Island, Youngjong Island and Sudokwon landfill in Korea are selected sites for research. Result of germination continuity shows that most S. europaea seeds germinate on March but no more after July. However the germination was occurred after that time in the greenhouse. So we concluded that no germination after July is a matter of environmental condition not the number of remaining seeds. Also germination was seldom occurred in the spot where seeds production was not happened. In result of continuity test of seed germination by soil depth, germination was occurred vigorously only in top soil. From these results, we note that most S. europaea germinate in the early spring, and germination is finished by July. And this rapid germination speed makes the number of seeds in soil seed bank rare. If a large number of S. europaea in some area are harvested after July, the number of this species will dramatically decrease in that area the following year. In Seokmo Island, we carried out reintroduction experiment by sowing S. europaea seeds. On the first year, a small number of S. europaea settled and they produced seeds successfully. On April 2010, the second year, we observed many S. europaea in seed sowing sites. And we found out that plowing is more efficient than treatment sea water for settlement of S. europaea.
Journal of Environmental Sciences-china | 2011
Uhram Song; Jun Euy Hong; Ji Hyun An; Ji Sue Chung; Jeong Won Moon; Jeong Hyun Lim; Eun Ju Lee
Harvesting of marshfire glasswort (Salicornia europaea) by local people has been increased recently since this plant was known for a well-being food. Even though some harvesting sites are facing high risk of environmental pollution, Salicornia europaea is still harvested on a large scale. Therefore, to investigate safety of Salicornia europaea as a food resource, salt marsh environment, potential harvestable biomass, element and heavy metal accumulations in Salicornia europaea has been studied in three salt marshes, west-coast of Korea. Salicornia europaea showed 150 - 230g/m 2 /yr harvestable biomass. Biomass and nitrogen contents of Salicornia europaea were closely related to soil nitrogen and carbon concentrations. Average Na, Zn, Fe, Cr accumulations in Salicornia europaea were 41479, 18, 297, 1.5 (mg/kg), indicating valuable trace element contents. However, average heavy metal accumulations such as As, Cd, Cu, Pb, Hg accumulations were 1.5, 7.1, 4.2, 1.5, 0.1 (mg/kg), which were even or higher than national standards (0.5, 0.5, 2, 2, 0.1) of salts. These results imply that harvesting and eating of Salicornia europaea in west-coast research sites would be harmful because the contents would be much higher if it is calculated as only considering salts and minerals. Therefore, harvesting of Salicornia europaea from some salt marsh in west-coast of Korea should be done cautiously.