Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Upal Ghosh is active.

Publication


Featured researches published by Upal Ghosh.


Environmental Toxicology and Chemistry | 2005

Effects of dose and particle size on activated carbon treatment to sequester polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine sediments

John R. Zimmerman; David Werner; Upal Ghosh; Rod N. Millward; Todd S. Bridges; Richard G. Luthy

Recent laboratory studies show that mixing activated carbon with contaminated sediment reduces the chemical and biological availability of hydrophobic organic contaminants. In this study, we test the effects of varying the activated carbon dose and particle size in reducing the aqueous availability of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and the uptake of PCBs by two benthic organisms. We mixed PCB- and PAH-contaminated sediment from Hunters Point Naval Shipyard, San Francisco Bay (CA, USA), for one month with activated carbon, at doses of 0.34, 1.7, and 3.4% dry mass basis. We found that increasing the carbon dose increased the effectiveness in reducing PCB bioaccumulation. In 56-d uptake tests with the benthic organisms Neanthes arenaceodentata and Leptocheirus plumulosus, PCB bioaccumulation was reduced by 93 and 90%, respectively, with 3.4% carbon. Increasing the dose also increased the effectiveness in reducing PCB and PAH aqueous concentrations and uptake by semipermeable membrane devices and quiescent flux of PCBs to overlying water. Decreasing activated carbon particle size increased treatment effectiveness in reducing PCB aqueous concentration, and larger-sized activated carbon (400-1,700 microm) was ineffective with a contact period of one month. We invoke a numerical model based on intraparticle diffusion in sediment and activated carbon particles to help interpret our experimental results. This model was useful in explaining the trends for the effect of activated carbon dose and particle size on PCB aqueous concentrations in well-mixed systems.


Environmental Science & Technology | 2011

Field-Scale Reduction of PCB Bioavailability with Activated Carbon Amendment to River Sediments

Barbara Beckingham; Upal Ghosh

Remediation of contaminated sediments remains a technological challenge because traditional approaches do not always achieve risk reduction goals for human health and ecosystem protection and can even be destructive for natural resources. Recent work has shown that uptake of persistent organic pollutants such as polychlorinated biphenyls (PCBs) in the food web is strongly influenced by the nature of contaminant binding, especially to black carbon surfaces in sediments. We demonstrate for the first time in a contaminated river that application of activated carbon to sediments in the field reduces biouptake of PCBs in benthic organisms. After treatment with activated carbon applied at a dose similar to the native organic carbon of sediment, bioaccumulation in freshwater oligochaete worms was reduced compared to preamendment conditions by 69 to 99%, and concentrations of PCBs in water at equilibrium with the sediment were reduced by greater than 93% at all treatment sites for up to three years of monitoring. By comparing measured reductions in bioaccumulation of tetra- and penta-chlorinated PCB congeners resulting from field application of activated carbon to a laboratory study where PCBs were preloaded onto activated carbon, it is evident that equilibrium sorption had not been achieved in the field. Although other remedies may be appropriate for some highly contaminated sites, we show through this pilot study that PCB exposure from moderately contaminated river sediments may be managed effectively through activated carbon amendment in sediments.


Integrated Environmental Assessment and Management | 2014

Passive sampling methods for contaminated sediments: Practical guidance for selection, calibration, and implementation

Upal Ghosh; Susan Kane Driscoll; Robert M. Burgess; Michiel T. O. Jonker; Danny D. Reible; Frank A. P. C. Gobas; Yongju Choi; Sabine E. Apitz; Keith A. Maruya; William R. Gala; Munro Mortimer; Chris Beegan

This article provides practical guidance on the use of passive sampling methods (PSMs) that target the freely dissolved concentration (Cfree) for improved exposure assessment of hydrophobic organic chemicals in sediments. Primary considerations for selecting a PSM for a specific application include clear delineation of measurement goals for Cfree, whether laboratory-based “ex situ” and/or field-based “in situ” application is desired, and ultimately which PSM is best-suited to fulfill the measurement objectives. Guidelines for proper calibration and validation of PSMs, including use of provisional values for polymer–water partition coefficients, determination of equilibrium status, and confirmation of nondepletive measurement conditions are defined. A hypothetical example is described to illustrate how the measurement of Cfree afforded by PSMs reduces uncertainty in assessing narcotic toxicity for sediments contaminated with polycyclic aromatic hydrocarbons. The article concludes with a discussion of future research that will improve the quality and robustness of Cfree measurements using PSMs, providing a sound scientific basis to support risk assessment and contaminated sediment management decisions. Integr Environ Assess Manag 2014;10:210–223.


Environmental Science & Technology | 2012

Effectiveness of Activated Carbon and Biochar in Reducing the Availability of Polychlorinated Dibenzo-p-dioxins/Dibenzofurans in Soils

Yunzhou Chai; Rebecca J. Currie; John W. Davis; Michael Wilken; Greg D. Martin; Vyacheslav N. Fishman; Upal Ghosh

Five activated carbons (ACs) and two biochars were tested as amendments to reduce the availability of aged polychlorinated dibenzo-p-dioxin/dibenzofurans (PCDD/Fs) in two soils. All sorbents (ACs and biochars) tested substantially reduced the availability of PCDD/Fs measured by polyoxymethylene (POM) passive uptake and earthworm (E. fetida) biouptake. Seven sorbents amended at a level of 0.2 × soil total organic carbon (0.2X) reduced the passive uptake (physicochemical availability) of total PCDD/Fs in POM by 40% to 92% (or toxic equivalent by 48% to 99%). Sorbents with finer particle sizes or more macropores showed higher reduction efficiencies. The powdered regenerated AC and powdered coconut AC demonstrated to be the most effective and the two biochars also performed reasonably well especially in the powdered form. The passive uptake of PCDD/F in POM increased approximately 4 to 5 fold as the contact time between POM and soil slurry increased from 24 to 120 d while the efficacy of ACs in reducing the physicochemical availability remained unchanged. The reduction efficiencies measured by POM passive uptake for the regenerated AC were comparable to those measured by earthworm biouptake (bioavailability) at both dose levels of 0.2X and 0.5X. The biota-soil accumulation factor (BSAF) values for unamended soil ranged from 0.1 for tetra-CDD/F to 0.02 for octa-CDD/F. At both dose levels, the regenerated AC reduced the BSAFs to below 0.03 with the exception of two hexa-CDD/Fs. The reduction efficiencies measured by earthworm for coconut AC and corn stover biochar were generally less than those measured by POM probably due to larger particle sizes of these sorbents that could not be ingested by the worms.


Environmental Toxicology and Chemistry | 2008

The effect of activated carbon on partitioning, desorption, and biouptake of native polychlorinated biphenyls in four freshwater sediments

Xueli Sun; Upal Ghosh

The present study evaluated the effect of activated carbon amendment in four freshwater sediments from the Great Lakes (North America) areas of concern with a wide range of sediment geochemical characteristics (0.83-5.1% total organic carbon) and polychlorinated biphenyl (PCB) concentrations (0.33-84.7 microg/g). The work focused on understanding the impact of activated carbon amendment on PCB aqueous partitioning, PCB desorption characteristics, and PCB biouptake in a freshwater oligochaete (Lumbriculus variegatus). The results showed that PCB aqueous equilibrium concentrations, rapid desorption fractions, and biouptake by the oligochaete were reduced after activated carbon amendment. Addition of activated carbon at a dose of 0.5-fold native organic carbon reduced PCB bioaccumulation by 42% for Niagara River sediment, 85% for Grasse River sediment, 74% for Milwaukee River sediment 1, and 70% for Milwaukee River sediment 2. A linear relationship was observed between log biota-sediment accumulation factor and the first 6-h desorption fractions for each PCB homologue for treated and untreated sediments. Water-lipid bioconcentration factors for PCB congeners were largely conserved after amendment with activated carbon. Our present results suggest that at steady state, changes in the aqueous PCB concentrations can be used to predict changes in PCB bioaccumulation in deposit-feeding organisms. Thus, use of advanced pore-water measurement techniques, such as solid-phase extraction passive samplers, may be suitable for long-term monitoring of treatment performance.


Environmental Science & Technology | 2013

Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury.

Jose L. Gomez-Eyles; Carmen Yupanqui; Barbara Beckingham; Georgia Riedel; Cynthia C. Gilmour; Upal Ghosh

In situ amendment of activated carbon (AC) to sediments can effectively reduce the bioavailability of hydrophobic organic contaminants. While biochars have been suggested as low-cost and sustainable alternatives to ACs, there are few comparative sorption data especially for mercury (Hg) and methylmercury (MeHg) at the low porewater concentrations in sediments. Here we compare the ability of a wide range of commercially available and laboratory synthesized ACs and biochars to sorb PAHs, PCBs, DDTs, inorganic Hg, and MeHg at environmentally relevant concentrations. Compared to natural organic matter, sorption capacity for most organic compounds was at least 1-2 orders of magnitude higher for unactivated biochars and 3-4 orders of magnitude higher for ACs which translated to sediment porewater PCB concentration reductions of 18-80% for unactivated biochars, and >99% for ACs with 5% by weight amendment to sediment. Steam activated carbons were more effective than biochars in Hg sorption and translated to modeled porewater Hg reduction in the range of 94-98% for sediments with low native Kd and 31-73% for sediments with high native Kd values for Hg. Unactivated biochars were as effective as the steam activated carbons for MeHg sorption. Predicted reductions of porewater MeHg were 73-92% for sediments with low native Kd and 57-86% for sediment with high native K(d). ACs with high surface areas therefore are likely to be effective in reducing porewater concentrations of organics, Hg, and MeHg in impacted sediments. Unactivated biochars had limited effectiveness for organics and Hg but can be considered when MeHg exposure is the primary concern.


Environmental Science & Technology | 2012

Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments.

Amy M.P. Oen; Barbara Beckingham; Upal Ghosh; Marie Elmquist Kruså; Richard G. Luthy; Thomas Hartnik; Thomas Henriksen; Gerard Cornelissen

Activated carbon (AC) amendment to polluted sediment or soil is an emerging in situ treatment technique that reduces freely dissolved porewater concentrations and subsequently reduces the ecological and human health risk of hydrophobic organic compounds (HOCs). An important question is the capacity of the amended AC after prolonged exposure in the field. To address this issue, sorption of freshly spiked and native HOCs to AC aged under natural field conditions and fresh AC amendments was compared for one soil and two sediments. After 12-32 months of field aging, all AC amendments demonstrated effectiveness for reducing pore water concentrations of both native (30-95%) and spiked (10-90%) HOCs compared to unamended sediment or soil. Values of K(AC) for field-aged AC were lower than freshly added AC for spiked HOCs up to a factor of 10, while the effect was less for native HOCs. The different behavior in sorbing native HOCs compared to freshly spiked HOCs was attributed to differences in the sorption kinetics and degree of competition for sorption sites between the contaminants and pore-clogging natural organic matter. The implications of these findings are that amended AC can still be effective in sorbing additional HOCs some years following amendment in the field. Thus, a certain level of long-term sustainability of this remediation approach is observed, but conclusions for decade-long periods cannot be drawn solely based on the present study.


Environmental Science & Technology | 2010

Polychlorinated Biphenyl Sorption and Availability in Field-Contaminated Sediments

David Werner; Sarah E. Hale; Upal Ghosh; Richard G. Luthy

Traditional and new relationships of polychlorinated biphenyl (PCB) distribution among the solid phases, the free aqueous phase, and biolipids are comprehensively reviewed using seven well-characterized freshwater and marine sediments polluted with PCBs. The traditional relationship relating free aqueous concentration and biolipid concentration to sediment total organic carbon, compound octanol−water partitioning coefficient, and solid-phase contaminant concentration overestimates measured free aqueous concentrations and biolipid concentrations by mean factors of 8 and 33, respectively. By contrast, relationships based on measured free aqueous phase concentrations or the PCB mass fraction desorbed from sediment provide reasonable predictions of biolipid concentrations. Solid-phase concentration-based predictions perform better when sorption to amorphous organic matter and black carbon (BC) is distinguished. Contrary to previously published relationships, BC sorption appears to be linear for free aqueous PCB-congener concentrations in the picogram to microgram per liter range.


Chemosphere | 2009

Measurement of activated carbon and other black carbons in sediments

Adam Grossman; Upal Ghosh

Black carbon in sediment, present natively or added as a treatment amendment in the form of activated carbon, reduces contaminant bioavailability. Field evaluation of activated carbon effectiveness in reducing contaminant bioavailability requires accurate methods to measure the amendment in sediments. The most commonly used method to separate black carbon from natural organic matter in soils and sediments is low temperature (375 degrees C) thermal oxidation which resulted in significant losses of activated carbons. A method was developed to isolate activated carbon using a solution of concentrated sulfuric acid and potassium dichromate to oxidize the natural organic matter while preserving the activated carbon. The chemical oxidation method was applied to assess the delivery of activated carbon to sediments in a pilot-scale demonstration project carried out in Grasse River, NY. Using this method on sediment from the Grasse River, over 98% of the natural organic matter was removed while preserving at least 95% of the activated carbon. The method was also demonstrated on other carbonaceous geosorbents and native black carbon in several sediment samples.


Environmental Microbiology | 2008

Site-specific microbial communities in three PCB-impacted sediments are associated with different in situ dechlorinating activities

Birthe V. Kjellerup; Xueli Sun; Upal Ghosh; Harold D. May; Kevin R. Sowers

Competitive PCR and denaturing HPLC analyses together with an assay detecting potential polychlorinated biphenyl (PCB) dechlorinating activities were combined with physical-chemical site characterizations to identify factors affecting the reductive dechlorination of PCBs in the three historically impacted sediments: Grasse and Buffalo Rivers, NY and Anacostia River, DC. In Grasse River sediment an in situ enriched population of Dehalococcoides phylotypes was abundant in high numbers together with a relatively high dechlorination activity and a high concentration of congeners containing unflanked chlorine substitutions. In contrast microbial communities in Anacostia and Buffalo Rivers sediments consisted of similar total numbers of putative dechlorinating bacteria, but the populations consisted of more diverse putative dechlorinating phylotypes and were associated with lower dechlorination activities and higher concentrations of flanked congeners. Differences observed in the PCB dechlorination activity were not influenced by the chemical PCB availability in spiked sediment or physical sediment characteristics, but were consistent with the concentration of PCBs and total organic carbon in the native sediment. Application of molecular methods for selective detection of indigenous microbial dechlorinating communities combined with assessment of the dechlorinating activity and analysis of the in situ congener profiles provided a comprehensive approach for characterization and identification of sites that are amenable to bioremediation, which is essential for the development of in situ treatment strategies.

Collaboration


Dive into the Upal Ghosh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd S. Bridges

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia C. Gilmour

Smithsonian Environmental Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rod N. Millward

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge